
Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

1

Data Encryption and Hashing Primer

Editors:

David Chesnut, Information Management Services, Inc.

Jean-Michel Billette, Canadian Cancer Registry – Statistics Canada

Castine Clerkin, North American Association of Central Cancer Registries

Steven Friedman, National Cancer Institute, National Institutes of Health

Susan Gershman, Massachusetts Cancer Registry

Selina Khatun, Nunavut Cancer Registry

Bozena M. Morawski, Cancer Data Registry of Idaho

Lauren Maniscalco, Louisiana Tumor Registry

Robert McLaughlin, Cancer Registry of Greater California

Recinda Sherman, North American Association of Central Cancer Registries

Qianru Wu, Nebraska Cancer Registry

Heather Zimmerman, Montana Central Tumor Registry

Publication date 1 : January 25, 2023

1 These guidelines should be reviewed and updated every 12 months.

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

2

Contents
Overview ... 3

Definitions ... 3

Encryption ... 5

Basics ... 5

Uses for encryption ... 5

Algorithms and Methods .. 6

Symmetric Key Encryption .. 6

Asymmetric Encryption ... 6

Real World Use of Encryption Methods.. 7

Key Management .. 8

Key Deletion .. 8

Summary of Encryption .. 9

Hashing.. 10

Hash Algorithms .. 10

Hash Properties ... 10

Salting the Hash .. 11

Public salt values ... 11

Secret salt values .. 11

Using hash values .. 13

What can hashes be used for .. 13

What hashes should NOT or can NOT be used for ... 13

Data Matching using Hash Values ... 14

Security considerations when doing matching ... 14

Trusted 3rd parties ... 15

Hashing Summary ... 17

Additional Resources .. 17

National Institute of Standards & Technology .. 17

National Cybersecurity Society ... 18

Center for Internet Security (CIS) .. 18

Cybersecurity & Infrastructure Security Agency ... 18

Appendix – Key Managers / Encryption Applications ... 19

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

3

Overview
This data encryption and hashing primer provides a high-level overview on the topics of data encryption
and data hashing. It provides an overview of different types of encryption and what they are and can be
used for. It also provides an overview of data hashing, describing what hashing is and what it can be
used for. It also outlines concepts that should be understood when hashing is used to secure data during
a data merge with outside parties.

This primer does not attempt to provide a full overview of all encryption or hashing facts, as there have
been many volumes written on those subjects. This primer is only meant to provide a high-level
overview of those topics.

Definitions
Plaintext:

Any data that can be viewed/used/read (by a human or otherwise) without data decryption. Plaintext is
the input to an encryption process, or the result of a decryption process.

Ciphertext:

Data that require a key or decryption to be viewed/used/read, resulting from performing an encryption
process on plaintext (data).

Data at Rest:

Data at Rest typically refers to data that are stored on some type of media. This could be a hard drive,
USB stick, or even cloud storage. It can also refer to data stored within a database.

Data in Use:

Data in Use (sometimes called Active Data) refers to data that are currently being processed in some
way by a computer system.

Data in Transit:

Data in Transit always refers to data that are actively being sent across a network. The network can be a
local network or the Internet.

Hash Salt:

A unique random text string that is added to the data being hashed to add randomness. It is sometimes
referred to as a key.

Key:

A string of characters used in an encryption algorithm to convert Plaintext to Cyphertext and Cyphertext
to Plaintext. Can also refer to the Hash Salt in a hashing algorithm.

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

4

Rainbow table:

The list of all field values and their corresponding hash and can be used as a reverse lookup to go from
hashed value to original value.

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

5

Encryption
Encryption is the process of converting readable text (plaintext) via a mathematical process into
ciphertext using a key. The process is reversible, meaning that when the correct key is used to decrypt
the ciphertext, the ciphertext will be converted back to the original plaintext.

There are many different types of encryption algorithms and processes used to encrypt data. While
some encryption algorithms and processes are more secure, faster, or easier to implement, all are
meant to perform a similar function: to protect the confidentiality and integrity of data.

However, to ensure that encryption can protect data confidentiality, integrity and availability, an
effective key management strategy is a must. The best encryption algorithm in the world cannot protect
confidentiality if keys are compromised or not managed appropriately. The same can be said for data
integrity. If keys are compromised data may be modified and re-encrypted without the receiver’s
knowledge, compromising its integrity. Also, availability may be compromised if keys are lost. Once data
are encrypted the key is required to recover it. Without the key the data are no longer available.

Basics

One of the essential properties of encryption is that the process is reversible. In other words, what you
put in is what you get out (especially important as encryption is used to protect the confidentiality of
data that will later be used in an unencrypted manner):

• Plain text + Encryption algorithm + Key = Ciphertext
• Ciphertext + Decryption algorithm + Key = Plain text

It should be noted that for encryption to function properly, plaintext that comes out of the decryption
process must be an EXACT copy of the plaintext what was put in. Encryption can therefore also be used
to protect data integrity along with its confidentiality.

A second essential property of encryption algorithms is that if the key or the ciphertext is modified the
returned plaintext from the decryption algorithm does not give away any part of the real plaintext. A
corollary to this is if the ciphertext is modified in any way the resultant plaintext is unusable. Please note
that most decryption processes will detect the ciphertext modification and alert the user that the
ciphertext has been modified and will refuse to decrypt it. This can happen because of incidental
internet transmission errors or because someone has purposely tampered with the file or the internet
transmission.

Uses for encryption

There are many uses for encryption. The following are examples of the common day-to-day uses of
encryption:

• Secure communications or data in transit
o Websites, e.g., https://somedomain.com
o File sharing applications, e.g., Box, OneDrive
o Secure emails

• Secure data at rest

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

6

o Full disk encryption
o Encrypted USB stick
o File encryption

Algorithms and Methods

An overview of encryption would not be complete without the definition of the types and classes of
encryption keys/algorithms. This is not an exhaustive list, but does provide the most popular and secure
algorithms at the time of this publication:

Symmetric Algorithms

• AES – Advanced Encryption Standard
• Triple DES – Triple Data Encryption Standard
• Blowfish
• Twofish

Asymmetric Algorithms

• RSA - Rivest-Shamir-Adleman
• ElGamal
• Diffie-Hellman
• Elliptic-curve Diffie-Hellman

Symmetric Key Encryption

The above symmetric algorithms are used in symmetric key encryption, meaning that the same key is
used to encrypt and to decrypt the data. While this is the fastest type of encryption and easiest to
understand, it is also the most prone to compromise, since the key must be common between parties,
i.e., be shared with each party that needs to encrypt or decrypt the data. Sharing keys is not always easy
to do in a secure manner.

Symmetric key encryption

Asymmetric Encryption

A second type of encryption is called asymmetric encryption, also called public/private key or just public
key encryption. This type of encryption does not suffer from the key sharing issue because distinct but

Data Key Cyphertext

DataKeyCyphertext

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

7

related keys are used to encrypt and decrypt the data. One key is kept secret, while the other is freely
sent to another party to be used in the encryption process. The following describes the generalized
steps of the asymmetric encryption process however each algorithm listed in the algorithms and
methods section may do it slightly differently:

• The Data Receiver creates a public/private key pair and sends the public key to the Data Sender.
The private key is kept secret by the Data Receiver and never shared.

• The Data Sender uses the Data Receiver’s public key to encrypt the plaintext and sends the
encrypted file, or cyphertext, to the Data Receiver.

• The Data Receiver uses their private key to decrypt the cyphertext file received from the Data
Sender. NOTE: Only the private key can decrypt the cyphertext created with the public key.

Asymmetric key encryption

Real World Use of Encryption Methods

At this point, you may ask – why not always use asymmetric (public key) encryption for everything?
Well, the answer is that public key encryption is painfully slow – 10,000 times slower than symmetric
key encryption. While this is a trivial consideration when encrypting small amounts of plaintext, it
becomes a much bigger issue when encrypting large amounts of plaintext or when trying to set up real
time communications on an “encrypted channel” (think FaceTime on your iPhone or Zoom on your PC).

Most of the time, when we talk about using public key encryption to secure files or data
communications, both methods of encryption are used. One typical scenario would be a random
symmetric key is generated (usually ≥ 64 characters long) and used to encrypt the plaintext being sent.
Then, that symmetric key is encrypted using a public key so that the encrypted symmetric key can be

Data Public
Key Cyphertext

DataPrivate
KeyCyphertext

Unusable
Data

Public
KeyCyphertext X

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

8

securely passed along to the receiver with the cyphertext. The process is then reversed on the receiver’s
side. The asymmetric private key is used to decrypt the symmetric key, which is then used to decrypt the
cyphertext.

Key Management

Key management is the hardest part of encryption. Although encryption algorithms can be managed
“behind the scenes” by a small number of individuals, key management is something that all parties
using encryption must manage properly. Improper key management can result in losses to
Confidentiality, Integrity, and/or Availability of the plaintext:

• Keys being stolen or compromised – the data or your communications are no longer secure –
you have a loss of Confidentiality and possibly Integrity.

• Keys being lost or deleted – encrypted data cannot be decrypted – you have a loss of availability,
since your data are unrecoverable.

We recommend that you establish and follow a good key management policy and – if encryption is
widely used to secure data within the organization – use a key management application. If encryption is
only being used for transferring data from one party to another, a key management application may be
overkill, but a good key management policy will never be. A key management policy will be tailored to
the organization, yours may already have one. It is like a password policy and is even sometimes
incorporated in with the password policy as a separate section. The key policy would typically touch on
items like:

• Required key strength
• Key lifetime – the length of time a key will be valid
• How often keys should be rotated
• Who has access to generate and distribute keys
• Key termination or deactivation
• Where secret keys must be stored
• Where the keys are backed up

While not an exhaustive list of items that should be in a policy the above does provide an overview of
the types of issues that need to be considered before starting to manage even a single key for securing
data.

An example of a policy template can be found under “Additional Resources.”

Key Deletion

When an encryption key is deleted, the plaintext encrypted with that key will become unrecoverable. A
good example of this is deleting the encryption key used to encrypt a data file. The data in the file will be
unrecoverable and unreadable even though the file is still available. Deleting the encryption key has the
same effect as securely deleting the file.

Most of the time key deletion is used to remove sensitive files from backup storage without actually
deleting the encrypted file from the backup storage medium. However, this approach must be planned

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

9

for in advance to ensure that there is an encryption key per file that can be deleted. This is typically set
up within the backup system and will require an enterprise key manager to work.

See the NAACCR Data Destruction Primer for more information on key deletion.

Summary of Encryption

1. Careful with Keys
a. Compromised keys can lead to undesired disclosures

2. Careful with Changes to Ciphertext
a. Any changes to ciphertext will result in keys being unusable and plaintext

data/information loss
3. Key deletion can be an effective and efficient way to securely remove access to information

https://www.naaccr.org/wp-content/uploads/2022/01/NAACCR-Data-Destruction-Primer-2021115.pdf

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

10

Hashing
Hashing is the process of creating a unique cryptographic representation, called a hash value, of the
plaintext being processed. A hash value can have many uses. It is most often used to ensure the integrity
of a communication or the integrity of a file. The following sections will discuss at a high level the
different hash algorithms and properties, and their uses.

Hash Algorithms

There are many different types of hash algorithms, better known as hash functions. Some are used in
cryptography to verify communications while others are used to ensure the integrity of files. The
following are the more well-known hash functions.

• MD5 – A 128-bit hashing function. No longer considered secure but sometimes still used.
• SHA1 – A 160-bit hashing function. No longer considered secure but sometimes still used.
• SHA256 – A 256-bit hashing function.
• CRC32 – Used mainly for file integrity checking, most install applications have this built in.

At the time of this writing the SHA (Secure Hashing Algorithm) is preferred at 256-bits or above for
cryptographic functions. The 256 refers to the number of bits that are output by the function. There is
also a SHA384 and SHA512 functions that output the respective number of bits.

Hash Properties

The properties of a hash are as follows:

1. The value output by the hash function will be a fixed length no matter the size of the data being
processed. The length depends on the algorithm being used.

2. The hash value generated has a very high probability of being unique.
3. The process of hashing data is non-reversible; the original text cannot be “de-hashed” from the

hash value.
4. Hashing the same data will always produce the same hash value.

Property four listed above is the reason that hashed values are important. Because a hash always
produces the same value from the same data, hashed values allow us to verify that the plaintext
originally hashed is the same plaintext we currently have if the hash values match. In other words, it
provides integrity. Although property 4 is a great way to verify data, it does not work well to secure
data. This can be illustrated by thinking of a simple number, say “123456789”; the hash of this value
would always be the same because that is a property of a hash. By extension, everyone would know that
the hash of “123456789” is:

2eZ2LdHI6vbWGzxhkvxAjU1tXxF20MKRabwk5xw_J0rSf81YEbMT1oH35V7ALXPUmclUVba1u1A6z1dPuo_-hQ==

This would not be very secure.

However, if we add some text to the end of the number, say “abc123” and hash it again, we get a
completely different result:

Tkp1lgt1kqapgeK9x2j9GrgnpzH8r_97Q6038P9FkUFu8NtBU1K1VnkqAHwEV_znniy6mnVLcqBXX7qXdFpQtA==

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

11

The process of adding additional and “random” text to plaintext and then generating a hash is called
salting, or a salted hash. The added text is called the salt, password, or sometimes a key for the hash.
Whatever it is called, it serves the same purpose. It provides randomness to the data and thus security
to the hashed data. There are several different ways that this “salting” process can be used, they are
described below.

Salting the Hash

Whether it is called a salt, a password, or a key, the same process is used when using it to secure data.
The salt is added to either the beginning or the end of the data to add randomness, and then the entire
value is processed through the hashing algorithm. Sometimes the salt may be publicly known, as in the
case with passwords stored in a database where a random salt is generated for each password stored.
The salt can also be kept secret, as in the case where we want to secure fields within a dataset while
keeping their uniqueness.

Public salt values

For the example of passwords stored in a database, the salt is added to the end of the password and
then attached to the beginning of the hashed value. This is done so that each hashed password stored
looks unique even if it is not. This makes cracking those passwords almost impossible. Using the example
from above for the hash of “123456789” with a salt of “abc123,” the stored password hash would look
like:

abc123|Tkp1lgt1kqapgeK9x2j9GrgnpzH8r_97Q6038P9FkUFu8NtBU1K1VnkqAHwEV_znniy6mnVLcqBXX7qXdFpQtA==

The salt is prepended to the hash value and separated by a special character “|” to indicate the ending
of the salt value and the beginning of the actual hash. This allows the password checking function in a
system to always know which salt value to use when generating a new hash value from the entered
password to check against the stored hash value. The entire process goes like this:

Simple password checking process

Secret salt values

Another way that salting can be used to secure data is by keeping the salt value (key) secret. The
salt/key is used the same way as above when generating the hash of the data; however, the salt/key is
kept secret and only shared with trusted parties. This is used in the following two scenarios.

User enters
password

System grabs stored
salt and password

hash value

System uses the salt
and the entered

password to create
new hash of

password + salt

Does new and
stored password

hash match
yes User granted

access

no

User denied
access

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

12

Scenario 1

A user wants to digitally sign a document. The document is readable by everyone, but the signature
needs to be authenticated by another party, and that party must be sure that the document has not
been changed since it was signed. A hash of the document, using a secret key, can be created, including
the signature once the document is signed. The party wishing to authenticate the document would then
securely receive the secret key and regenerate the hash of the document and signature. If they match,
the document is unchanged. The process would look something like this:

Simple document signing example

While this is not the exact process behind digital signatures, it does illustrate what happens and how
hashes are used.

Scenario 2

A primary researcher has data that they want to share with a colleague, but they do not want to include
a sensitive ID field in the data. However, they want to a way to provide updates to the data without
having to generate a unique ID field and a crosswalk file for the sensitive ID field. This can be
accomplished by using a long random salt that only the primary researcher has access to. For our
purposes, we will call the long random salt a key. The key is added to the end of the sensitive ID field
and the combined value is processed by the hash function. The resulting value is a representation of the
sensitive ID field that is secure if the key is kept secret.

User signs
document

System generates a
secret key

communicates it to
the signer

System uses key and
signed document to
generate a hash and

attaches it to the
signed document

User sends
document and

secret key to the
receiver

Receiver generates a
hash of document

using secret key and
document

Do old and new
hash match? yes Document

not changednoDocument changed

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

13

Simple field hash with secret key

If the data need to be updated or added, the same secret key can be used by the primary researcher to
regenerate the data and the same unique key field will be created.

Using hash values

What can hashes be used for

• Storing passwords in a database following best practices
o Use at least SHA256 hashing function for password
o Always use a unique salt for each password stored

• Verifying the integrity of a file or message
o Use a SHA, MD5 or CBC checksum

• Verifying the integrity of a record or key fields of that record
o Use SHA hash

• Maintaining the confidentiality of a field when a secret key is used

What hashes should NOT or can NOT be used for

• Maintaining the confidentiality of fields with limited values (i.e., SSN, first name, last name, and
text fields of less than 6 characters like short passwords) when a common public or common
known salt/key is used.

o Small fields are insecure, since the total combinations of items is small (< 1 billion). With
small fields, calculating the hashes for all possible combinations, the fields are relatively
quick to crack if the key or salt is known.

For illustration, hashing all the possible SSNs with a known key takes less than 60
minutes on a reasonable sized computer; hashing all common first names or surnames
take even less time. Those lists can be found on the Internet.

• Encrypting data. As stated above, hashes are one way. Encryption, by definition, can be
reversed.

The first bullet point under what hashes should not be used for deserves a little more explanation. The
process of generating all possible hashes using all possible values of a field using a single salt or key is
referred to as generating a rainbow table. This process was first used to crack passwords that did not
include a random salt on each password. The attack allows an attacker to pre-generate a table of
possible hash function outputs for common passwords, and easily match the hashed values to plaintext
passwords. Therefore, a random salt is now added to all passwords that are stored in a database to

Sensitive ID
field

Secret Key

Hash function Unique Key
field

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

14

prevent this kind of attack. In the scenario above, the same key/salt is used to hash all fields in the
database. A rainbow table can be generated for the defined field values and the known salt/key. For
fields containing less than 1 billion possible values such as SSN, common first names, common
surnames, these tables can be generated to re-identify the values, much like a lookup table.

Data Matching using Hash Values

Hashing is often used in data matching when two parties would like to match subjects by some sensitive
fields, like SSN, address, or name but do not want to have the actual values of the fields available in the
dataset for the other party to see. This is usually used for security purposes when transferring the data,
and it can also be used to obscure the sensitive data from the other party. However, there are caveats
with how secure this is, the main issue being that shorter fields like SSN can be reverse hashed by the
other party, since the salt/key used to create the hash must be known to both parties so that a
“matchable” hash can be created.

If the data must be kept secret from the other party, the only way to do so is to use a trusted 3rd party to
do the matching. This will allow fields with low entropy like SSN to be matched securely. Some examples
are provided in the Trusted 3rd party section below, where these topics are discussed in further detail.

Security considerations when doing matching

• Do the data need to be kept secure from inadvertent disclosure?
• Do the unmatched data need to be kept secure (unable to be re-identified) from the matching

party?
• Who will be doing the matching?
• Who will provide the salt/key to hash the data?
• How will the salt/key be provided?
• Which data fields will be matched?
• Who will have access to the hashed data file and the program and/or salts/keys used to

generate the hashed data file?

The above are considerations that need to go into keeping data secure during the matching process. The
main thing to remember is that whoever controls the salt/key for the hash also controls the overall
security of the data being shared.

Keys Embedded Within Software
It should also be noted that some applications have the salt/key embedded within the software. Data
stewards should not rely on salts/keys embedded in software for security, as all software can be
decoded, and keys found within the decompiled code no matter how well they are hidden.

‘Double Hashing’
Some matching procedures talk about “double hashing” sensitive fields that have a short length for
extra protection. For example, the SSN is hashed with one salt/key and then the output of the first hash
is hashed again with another salt/key. If a party has access to both salts/keys used in the hashing
process (which they would since they both must be used to generate the hash files), it is not much more
difficult to decode the field than it is for a single hashed value. As noted above in this document, it
would take less than 1 hour to crack an SSN hashed field knowing the salt/key. For a double hashed

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

15

field, it would take approximately 2 hours to create the necessary files to crack the field. Double hashing
does not remove the security issues associated with fields with limited values (< 1 billion combinations).
If the salt/key is unknown to the attacker, the field would be secure either being single hashed or double
hashed.

Commonly Used Fields at Increased Risk of Cracking
While the discussion has been focused on short fields like SSN, other fields are also susceptible to
“cracking.” Name fields are also vulnerable since there are lists of first names and surnames commonly
available on the Internet that could be fed into a program that can generate possible hashes with a
known salt/key. The key point here is that data are only secure if the salt/key or “password” is kept
secure. If too many people know the salt/key, or if it can be decompiled or deconstructed from a
program, the hashed data are not really secure, even though a hash is only one way.

Note: The low entropy field issue is why your IT department makes you use a “long, complex” password.
(Entropy is dependent on the number of characters, whereby shorter fields have lower entropy, i.e., are
more easily guessable.)

Trusted 3rd parties

A trusted 3rd party can be used for matching so that the parties providing the data would not have
access to data from the other party. The trusted 3rd party would be the one controlling the flow of data
and the matching process. Two scenarios that may help to explain the process are described below.

Example 1:

Party 1 and Party 2 want to match data on SSN. However, both parties have a state mandate that no
sensitive data can be revealed to entities outside the state. They employ a trusted 3rd party to do the
match. Both parties agree between themselves on a salt/key to use for the hashing, but do not
share that key with a trusted 3rd party. The trusted 3rd party receives data files from each of the two
parties and performs the matching of records between the datasets. The trusted 3rd party then uses
another salt/key that only they know to hash the hash value of the SSN in the combined dataset so
the combined dataset can be returned to both parties for analysis without either party being able to
reidentify the records.

Note: A minor caveat to this is low case numbers for records with unique data. One party may still
be able to reidentify some records if unique case counts are contained in the matched data.

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

16

Example data flow for Example 1

Example 2:

Two or more parties want to see if they have potential matches in their datasets, and would like to
combine data on matched cases only without identifying/sensitive fields. The matching criteria is
agreed upon and a trusted 3rd party is chosen to oversee the match process. The 3rd party provides a
program to each participant that will first normalize fields and then individually hash them. Each
participant runs the program and sends the resulting hashed file to the 3rd party to be used for
matching. The 3rd party would then execute the matching program to find the records that match in
each participant’s hashed dataset. The 3rd party could then send the matched record IDs back to
each of the participating parties so the full record can be sent to the trusted 3rd party for the
creation of the combined dataset. A combined dataset is created from the records by the 3rd party.
None of the sensitive fields would be included in the combined dataset.

Depending on the use of the dataset and whether it is important to be updated in the future, an
identifying ID could be generated from the original hashed data, probably by using the SSN field or
other unique field combination and hashing it again with a new salt/key. This new salt/key would
need to stay with the 3rd party so the data could not be reidentified by anyone else and would allow
updates to the records.

Party 1 Party 21st
Key

Data

3rd Party

Data

Matched
Data

Re-Hash
Data

2nd

Key

3rd Party

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

17

Example data flow for Example 2

Hashing Summary

Hashing can be used for many things when it comes to data integrity and confidentiality. Hashing can be
used to ensure files have not changed since they were created, and it can be used to validate the
integrity of an email. It can also be used to secure passwords within a database or sensitive data fields
within a data file. However, when hashing is used for maintaining confidentiality extra steps and extra
thought must be put into the process to ensure the confidentiality of the protected data is maintained.

The above sections attempted to provide a high-level overview of hashing, its uses, and some issues that
need to be considered when using hashes. Those sections should not be considered everything that
must be addressed or known on the subject. This only scratches the surface and is intended to provide a
starting point for further exploration and understanding.

Additional Resources
We have included some additional resources for encryption and cybersecurity. These resources range
from easily interpretable to highly technical, but are provided as a starting point for reliable resources
for the registry community.

National Institute of Standards & Technology

https://www.nist.gov/cybersecurity

General guidance on all cybersecurity issues from the perspective of the U.S. government.

Party 1 Party 2

Key

3rd Party Combined
Data

Re-Hash
Data

Records with
only match fields

Records with
only match fields

3rd Party

Party 1 Party 2

3rd Party performs data
match Matches Matches

Matched
Data

Matched
Data

Key

https://www.nist.gov/cybersecurity

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

18

National Cybersecurity Society

https://nationalcybersecuritysociety.org/

Membership-based organization that focuses on small to medium sized businesses. Offers some free
and reliable practical best practices documents. Membership provides access to more advanced guides
and templates; although membership prices seem reasonable, additional resources behind membership
paywall have not been vetted.

Example of an encryption (including key management) policy:

https://nationalcybersecuritysociety.org/wp-content/uploads/2019/10/Encryption-Policy-Template-
FINAL.pdf

Center for Internet Security (CIS)

https://www.cisecurity.org/

CIS provides lists of security controls, including encryption best practices, and CIS benchmarks.

Cybersecurity & Infrastructure Security Agency

https://www.cisa.gov/

Provides general information about cybersecurity, including whitepapers on best practices.

CISA document describing optional best practices for encryption key management:

https://www.cisa.gov/sites/default/files/publications/08-19-2020_Operational-Best-Practices-for-
Encryption-Key-Mgmt_508c.pdf

https://nationalcybersecuritysociety.org/
https://nationalcybersecuritysociety.org/wp-content/uploads/2019/10/Encryption-Policy-Template-FINAL.pdf
https://nationalcybersecuritysociety.org/wp-content/uploads/2019/10/Encryption-Policy-Template-FINAL.pdf
https://www.cisecurity.org/
https://www.cisa.gov/
https://www.cisa.gov/sites/default/files/publications/08-19-2020_Operational-Best-Practices-for-Encryption-Key-Mgmt_508c.pdf
https://www.cisa.gov/sites/default/files/publications/08-19-2020_Operational-Best-Practices-for-Encryption-Key-Mgmt_508c.pdf

Last updated: 26 January 2023
Compiled by the NAACCR Data Security & Confidentiality Workgroup

19

Appendix – Key Managers / Encryption Applications
The following is a non-extensive list of commonly used applications that can be used to encrypt data
and/or manage keys. This is not a recommendation of any product listed. Many online file sharing
platforms provide their own key mangers to help the user manage their encryption keys.

Encryption Software

Below is a list of software that can be used to encrypt/password protect files. Please note that there are
many file sharing services that provide security for sharing files and use encryption when storing those
files on their servers.

• GPG (Gnu Privacy Guard) – Used to manage encryption of files and messages, and also manages
private, public keys for users.

• 7-zip – File archive utility that can create a password protected encrypted archive file using ASE
256 symmetric encryption.

Password / Secret Management

The list below gives some examples of password/secret management servers that can be used to
manually store and manage encryption keys securely.

• HashiCorp Vault – Password, secret, and encryption key management for local or enterprise use.
• LastPass – Internet-based Password and secret manager, which can be used to manually store

encryption keys.
• Thycotic Secret Server – Password, certificate, and secret management server for enterprise

use.

Key Management Servers

These are dedicated servers or services that handle managing encryption keys using a standard protocol.
These servers can be integrated with hardware devices such as hard drives or storage servers, and
software such as backup applications, to provide key management services for the automatic encryption
of data.

Please note that these are enterprise-level devices. Most large cloud providers also provide key
management servers to secure their infrastructure. Below are a couple of the on-premises providers.

• Townsend Security – Enterprise Key Management Server (KMS)
• Dell OpenManage Secure Enterprise Key Manager

	Overview
	Definitions
	Encryption
	Basics
	Uses for encryption
	Algorithms and Methods
	Symmetric Key Encryption
	Asymmetric Encryption
	Real World Use of Encryption Methods

	Key Management
	Key Deletion

	Summary of Encryption

	Hashing
	Hash Algorithms
	Hash Properties
	Salting the Hash
	Public salt values
	Secret salt values

	Using hash values
	What can hashes be used for
	What hashes should NOT or can NOT be used for

	Data Matching using Hash Values
	Security considerations when doing matching
	Keys Embedded Within Software
	‘Double Hashing’
	Commonly Used Fields at Increased Risk of Cracking

	Trusted 3rd parties

	Hashing Summary

	Additional Resources
	National Institute of Standards & Technology
	National Cybersecurity Society
	Center for Internet Security (CIS)

	Appendix – Key Managers / Encryption Applications

