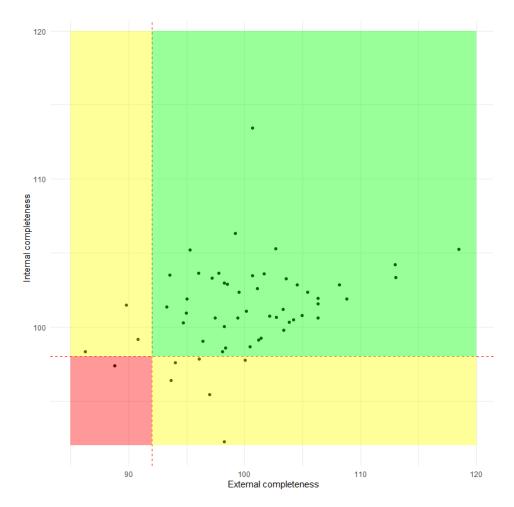


Findings and Recommendations of the Statistical Expert Panel on Central Registry Completeness

March 15, 2021

Acknowledgment

This publication was supported by the Cooperative Agreement Number 6-NU38OT000286-01 funded by the Centers for Disease Control and Prevention (CDC). Its contents are solely the responsibility of the author and do not necessarily represent the official views of CDC or the U.S. Department of Health and Human Services.


Introduction

This report contains the findings and recommendations of the Statistical Expert Panel with respect to measuring completeness of case ascertainment at central cancer registries in the United States. One core function of central cancer registries is the publication of populationbased incidence rates, which requires that all cases be reported and counted. Evidence suggests that the completeness of case reporting in the United States has improved in the last 10 years. Although it is impossible to know what cases may be missing, delayed reports and reports from death certificates suggest that only a few percent of cases are not reported within the required 23-month time frame nationwide.

For more than a quarter century, completeness has been measured by the North American Association of Central Cancer Registries, Inc., (NAACCR) and the National Program of Cancer Registries (NPCR) in a consistent manner: An expected number of cases is calculated based on cancer mortality rates and adjusted for the demographic structure of each state's population, and the reported number of cases is compared to this expected number. This report expands on that approach to produce a suite of indicators that are more sensitive to diverse aspects of case reporting.

Statistical methods for estimating case completeness can be classified into two primary types. *Internal methods* are those that predict case counts based on registries' own reporting history. *External methods* are those that predict case counts based on variables that are external to central registries. These include mortality rates, population demographics, socioeconomic indicators, and information from health surveys. Each of these types of methods has its own sets of limitations, some of which are discussed below. To overcome the limitations inherent in each method, the Statistical Expert Panel proposed a solution that makes use of both methods as part of a suite of completeness indicators. For registries that perform well using both methods, there is higher confidence in the completeness of their data than is achieved from using either method on its own. The same is true for registries that do not perform well on either measure. For registries that perform well on one measure but not the other, a set of process measures is proposed to help resolve the discrepancy and assist registries in identifying potential gaps in reporting.

The concept is illustrated in Figure 1, which reports internal and external completeness scores for 56 U.S. registries for cases diagnosed in 2017 and reported in 2019. The plot has been color-coded into zones representing completeness scores above both thresholds (green), one threshold (yellow), and no thresholds (red). The thresholds used here are for illustrative purposes only, although they do correspond to values that have been used historically. Forty-six registries were above both thresholds, one was below both thresholds, and nine were below one threshold and above the other.

Figure 1. Internal versus external completeness measures for cases diagnosed in 2017. Each point corresponds to a registry.

One would expect that independent measures of a quantity such as completeness should agree, but the correlation in Figure 1 is quite low. The reason for this is believed to be that the two methods are sensitive to different characteristics of the data. The internal method is sensitive to registries that have a substantial drop in cases in a single year. It is not sensitive to registries that have consistently underreported cases for a number of years. The method looks for adherence to a trend; if the trend is to underreport, then the registry will be adhering to that trend. The external method, in contrast, is sensitive to registries that appear to be underreporting relative to other registries. A registry that does so consistently will be identified as such each year. But because the method assumes the average registry has complete data, it is not sensitive to national trends in reporting. For example, because of the delayed rollout of the coding rules for cases diagnosed in 2018, it is likely that completeness declined nationally, but the threshold is still based on a percentage of the average registry, where the average registry is presumed complete. The lack of agreement between the internal and external measures is the reason additional measures should be taken into consideration when evaluating completeness.

The following sections provide technical detail about the proposed internal, external, and secondary methods.

Internal Method

The internal measure of completeness consists of comparing each registry's reported cases to the number that was expected based on a projection of case counts from recent years. The method proposed is an extension of the method currently employed within the Surveillance, Epidemiology, and End Results (SEER) program to evaluate its member registries, and it is also used informally by many NPCR registries in evaluating their own progress toward completeness benchmarks. It has the advantage of being intuitive and easily calculated at any point in time. A disadvantage of this method, as described above, is that if a registry consistently underreports cases, it may still perform well with this measure.

In our proposal, each registry's expected case counts are computed individually for all site, gender, age, and race groups combined. It also is separately calculated for individual cancer sites. All data submissions are used in this process, except in a few situations when data points for registry/year/site are treated as missing, and completeness measures are not provided. Details about missing data are presented in Appendix A.

The input data consist of data from submissions dating back to 2001. Trends are defined using joinpoint regression, a method that finds the best-fit straight-line segments through a time series, with the number of line segments flexible. Here, a maximum of three line segments is permitted (that is, no more than two joinpoints connecting the line segments are permitted). The expected case count for the latest year is extrapolated from the line segment ending in the previous year. For more detail on this and other methodological points, see the technical Appendix A.1 for the internal completeness method.

An example is shown in Figure 2. First, the expected case count for 2017 of 27,956 is derived by linearly extrapolating the upward trend seen from 2014 to 2016. Next, this expected count is adjusted by the state's historic case reporting delay factor (1.018) relative to that of the nation's (1.041). This means that for this state, one would expect about 1.8 percent more cases to eventually be reported after the first submission, while for the country as a whole one would expect 4.1 percent more cases. To adjust the expected case count for the fact that this state is doing better at its first report than the country as a whole, the expected case count is adjusted down by the ratio of the delay factors, i.e., $1.018 \div 1.041 = 0.978$. The delay-adjusted expected count is thus 27,956 × 0.9779 = 27,348. Conversely, if the delay factor for this registry was worse than the national average, then the delay-adjusted case count would be adjusted upward.

The actual reported count of 27,084 is then divided by the delay-adjusted expected count to yield an estimate of completeness. In this example, the completeness is 99.0 percent. This means that *relative to the nation as a whole* (adjusting for age, race, sex, ethnicity, and mortality), this state has 99.0 percent of its cases reported. Note that this is different from having achieved 99.0 percent of its long-term final case count.

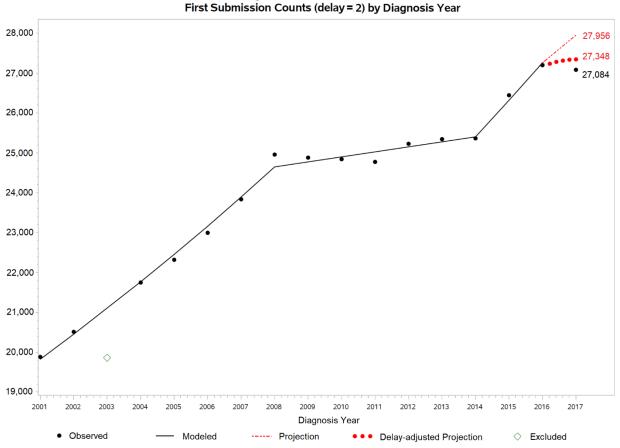


Figure 2. Joinpoint model used to derive expected case count in the internal completeness method

External Method

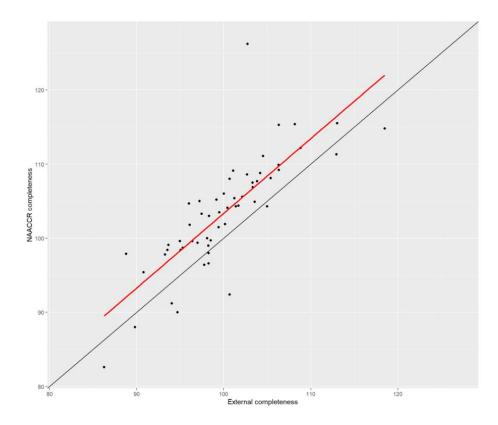
The external method of calculating completeness is similar to the internal method in that it compares each registry's reported cases to an expected number of cases to derive a proportion. The external method, however, uses factors outside the registry's own data in determining the expected number of cases. This section recalls the current approach for calculating completeness, introduces a new regression-based approach, and touches on some extensions for the new regression approaches that were considered.

Existing Approach. The existing method used by NAACCR and NPCR for measuring completeness is an example of an external method. With this method, the expected count (e.g., expected number of cancers) for a given registry is as follows:

Expected count = $\left[\frac{\text{SEER or NPCR reference incidence}}{\text{US Mortality}}\right] \times \text{Local mortality},$

where an expected count is calculated separately for each age group, sex, race/ethnic group, and selected cancer sites. These counts are then summed to obtain a single expected count. The ratio of the observed to expected counts is then taken as a measure of completeness. This ratio is multiplied by 100 to obtain a completeness score.

Proposed Regression Based Approach. The Statistical Expert Panel explored an alternative regression-based approach for estimating the expected case counts using regression models that can predict the expected number of cancers. For each cancer site, this report effectively proposes estimating the expected count for a given age group, sex, and race/ethnic group by the following model:

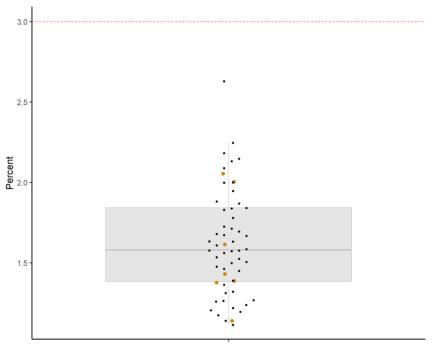

Log(Expected Count) = $f_A(Age) + f_S(Sex) + f_R(Race/Ethnic group) + f_M(Mortality)$

where the functions, f, and other details are provided in Appendix A.2. Again, the expected counts are summed across all demographic groups and cancer-sites to obtain a single expected count (\hat{Y}) , which is then compared with the observed number (*Y*). The Statistical Expert Panel reports the estimate of completeness, $\hat{c} = 100 \times Y/\hat{Y}$, the corresponding 95 percent confidence interval, and the probability that the true completeness exceeds pre-specified thresholds.

The Statistical Expert Panel considered two modifications to this proposed regression-based approach to improve the prediction of cancer incidence. They first considered using additional demographic and behavioral information about the population in each of the registries. This information—drawn from the American Community Survey (ACS) of the U.S. Census, the Behavioral Risk Factor Surveillance Survey (BRFSS) of CDC, and the Area Health Resources File (AHRF) produced by the Health Resources and Services Administration—was captured in the set of 33 additional variables listed in Appendix A.3. The variables were chosen based on a hypothesized association with cancer incidence or because they have been historically included in similar modeling projects. The ACS and AHRF variables were available at the county level, and the BRFSS variables were available at the state level. Most were not available by age or race/ethnicity categories. For most cancer sites, including these additional variables in the model did not improve the accuracy of the predictions and, therefore, for simplicity the Statistical Expert Panel chose to use the base model described above.

Second, the Statistical Expert Panel considered fitting the regression models using county-level data. Again, this additional level of complexity did not significantly improve the accuracy of the predictions or warrant further consideration.

Given that the proposed external method and existing NAACCR completeness method use the same inputs (mortality, site, age, sex, race/ethnicity) one might expect them to have similar results. Indeed, this is the case. Figure 3 shows a scatterplot of the two methods for the same year of data. The coefficient of determination (*R*-squared) between the two is 0.64, indicating good agreement. Thus the regression approach can be seen as a generalization of the NAACCR method, one that allows more flexibility to measure the relationships between covariates and incidence rates and that allows a wide array of additional variables to be added.

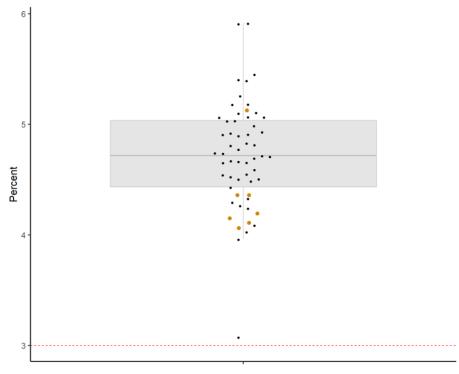

Figure 3. Comparison of existing NAACCR completeness method with external method for cases diagnosed in 2017. The red line is the best-fit line between the two variables ($R^2 = 0.64$); the black line is the line of equal values.

Secondary Process Measures

Recognizing that no universal agreement exists between the proposed internal and external methods and that a registry may perform poorly on one or the other despite its implementing best practices to ensure complete case ascertainment, the Statistical Expert Panel further proposed a series of five process measures as a third indicator of completeness. The process measures are premised on the idea that the overall mix of cases reported to a registry is generally consistent in terms of site distribution, clinical characteristics, and types of reporting sources when compared to other registries. If one or more of these is out of balance, it may be suggestive of wider problems with the data collection process. In contrast, if each of these is within normal parameters, then confidence in the adequacy of the overall data completeness would increase. The Statistical Expert Panel proposed five such measures for consideration. Although thresholds are suggested for each of these measures, they could be modified. The thresholds were based on input from registry directors and national and international practices.

1. Percentage of cases with ill-defined site. The anatomic site of origin of a tumor is among the most fundamental pieces of information that is collected. When this is absent, very little can be done with the case analytically, and such cases are rarely included in surveillance and research activities. Under the reasoning that missing data have a strong tendency to cluster, the proportion of cases with an ill-defined site can be seen as a marker for the existence of additional cases that were not reported at all. This measure is sometimes used by registries in other areas of the world.

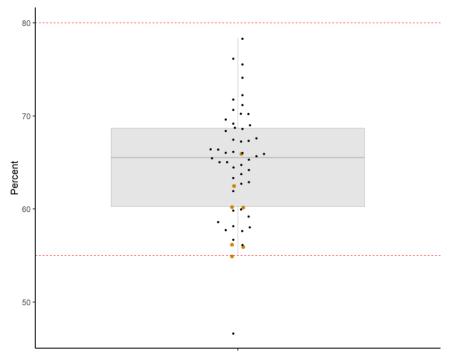
Figure 4 shows that in no registries were more than 3 percent of all cases coded to ill-defined site and in one registry more than 2.5 percent of cases were coded to ill-defined site. The seven yellow points correspond to seven registries under secondary review—that is, they achieved favorable completeness scores based on either the internal or external methods but not on both. These are drawn from the 10 points in the red or yellow zones in Figure 1, after removing three that had a reasonable probability of exceeding the threshold after accounting for uncertainty related to registry size (this is explained further in the Sample Report following this section). In Figure 4, each of these seven points has a typical value relative to other registries. The highest-valued registry here is an outlier, falling outside the whiskers of the box-and-whiskers plot, defined here as exceeding the 75th percentile by more than 1.5 times the interquartile range. The red dashed line at 3 percent indicates a possible threshold for this measure, although 2.5 percent or any value that is an outlier also could be justified.



Proportion of cases with ill-defined site

Figure 4. Proportion of cases with ill-defined site, by registry, 2017 diagnosis. Each point corresponds to a registry. Yellow points represent registries of potential concern as explained in the text.

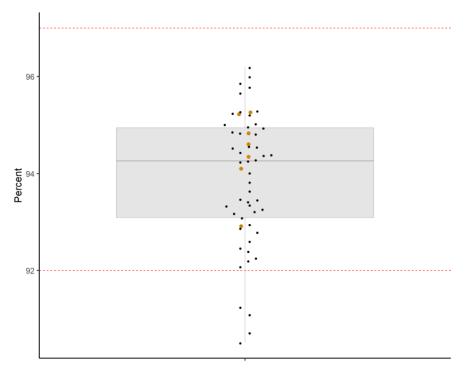
2. *Proportion of myeloma and leukemia cases.* Focusing on cancer sites that are known to have a tendency to be underreported or to have substantially delayed reporting can be indicative of more widespread reporting issues. In contrast, if a registry appears to have good reporting for these sites, it is more likely that it has good reporting for all sites. The two major site groupings with the largest delay factors as calculated and published by SEER in recent years are, by far, leukemia and myeloma. For cases diagnosed in 2017 and submitted in 2019, the delay factor for leukemia was 1.13 and myeloma was 1.11, compared with 1.04 for all sites combined. The delay factors for all other individual sites tabulated were between 1.03 and 1.05, with the exceptions of uterus (1.02), prostate (1.06), and liver (1.06). Figure 5 shows the proportion of leukemia and lymphoma cases by registry. The only outlier was a registry with a value just above the proposed threshold of 3 percent, but it was not among the seven registries


of concern. This could indicate that this registry is generally complete but one may want to look at the reporting of these two sites more specifically. It is possible, of course, to meet a data completeness standard while being deficient in a specific cancer site. The proportion of myeloma/leukemia also is influenced by the underlying cancer risk in the population. In particular, the registries that tend to be near the bottom of this distribution (those around 4 percent) tend to be those with very high percentages of white populations. This raises the possibility of using race-adjusted proportions rather than absolute proportions, which is not presented here but would be easy to implement.

Proportion of leukemia and myeloma cases

Figure 5. Proportion of leukemia and myeloma cases, by registry, 2017 diagnosis. Each point corresponds to a registry. Yellow points represent registries of potential concern as explained in the text.

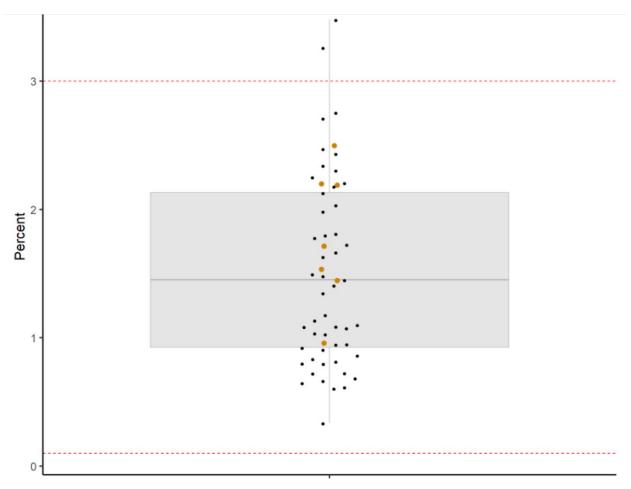
3. Percent of brain tumors with benign behavior. The collective body of years of national cancer data reporting suggest that about 70 percent of all brain tumors are benign (Ostrom et al., 2020). A central registry that deviates too far from this range may have a problem with either benign or malignant tumors' being underreported. Figure 6 shows one severely outlying registry with a value well below 50 percent and a second registry exactly at the proposed threshold of 55 percent. The latter is among the seven registries of concern. No registries exceed the other proposed threshold of 80 percent. The registry falling below 50 percent, incidentally, has shown this pattern year after year. Again, it may be indicative of a problem with a specific type of reporting that is not sufficient to impact the overall completeness by a large degree.



Proportion of brain tumors that are benign

Figure 6. Proportion of brain tumors that are benign, by registry, 2017 diagnosis. Each point corresponds to a registry. Yellow points represent registries of potential concern as explained in the text.

4. Percentage of cases that are microscopically confirmed. Over recent years,


approximately 94 percent to 95 percent of all reported cancers have been microscopically confirmed nationally, and this figure exhibits little variation among registries (CDC, 2020). When this value falls far outside of this range, it can indicate potential underreporting of either clinical or pathologic cases. Figure 7 indicates that four registries fell below a proposed threshold of 92 percent, but none of these were among the seven registries of concern, and none qualified as outliers. No registries exceeded the proposed upper-limit threshold of 97 percent.

Proportion of tumors microscopically confirmed

Figure 7. Proportion of tumors microscopically confirmed, by registry, 2017 diagnosis. Each point corresponds to a registry. Yellow points represent registries of potential concern as explained in the text.

5. *Proportion of death certificate only (DCO) cases.* As proportion DCO cases is already a data certification standard, this measure has a certain redundancy, but its use here is not entirely redundant. Generally speaking, the correlation between DCO proportion and completeness should be high, because death certificates function as a primary backstop to detect missed cases. If a cancer diagnosis is not reported while a patient is alive, it will be reported on the death certificate if that cancer is a primary cause of death, although recommended practice is to also review cases where cancer is listed as a contributing cause of death. This practice does not mean that death certificates pick up all missed cases, but rather that death certificates pick up a substantial proportion of the missed cases. If a DCO rate is unusually high, therefore, in the case of disagreement between the internal and external modeling methods, the balance tips in favor of incomplete reporting. In contrast, a registry with a low DCO rate would be tipped in favor of complete reporting. In Figure 8, two registries are seen to have exceeded the existing standard of 3 percent, neither of which was among the seven registries of concern.

Proportion of Death Certificate Only Cases

Figure 8. Proportion of tumors reported only by death certificate, by registry, 2017 diagnosis. Each point corresponds to a registry. Yellow points represent registries of potential concern as explained in the text.

In addition, we are proposing that there also be a minimum threshold for DCO cases. Occasionally, registries have reported zero or virtually zero DCO cases, which is implausible. (There will always be a very small share of patients who die at home from cancer without ever being treated, for example). We are proposing to set this threshold at 0.1 percent. No registries were near this threshold.

Summary of secondary process measures. Among the seven registries for which there was a suggestion of a problem with reporting completeness because of falling below either the internal or external threshold, all seven met the secondary process measure thresholds, although one was exactly at the proposed threshold for the proportion of brain cancers with benign behavior. Using the logic of our proposed approach, each of these registries would meet the standard for completeness.

Sample Report

In this section, we present an example of the kind of information that could be conveyed to each registry. Each state would be issued a report comprising three tables. The first table (appearing as Figure 9 in this report) reports the internal and external completeness scores for the most recent data submission. The completeness scores are the ratios of the observed to expected numbers of cases, which also are provided. The small differences in the observed counts reflect cases with unknown age and/or sex that were included in the internal method, but not the external method, which requires these values to be known. Also in this table are the 95 percent confidence intervals around the completeness scores and the probability that the score is above a specific threshold. As we have been doing throughout this report, we chose scores of 98 for the internal method and 92 for the external method, but any other value can be substituted here. It is recommended that registries assess these measures in the context of their own reporting before thresholds are set and applied.

(registry name) All Sites Completeness Estimates Submission Year = 2019; Diagnosis Year = 2017

		Internal			_	External	
Observed	Predicted (Delay- adjusted)	Completeness (95% Cl)	Probability of completeness > 98	Observe d	Predicted	Completeness (95% Cl)	Probability of completeness > 92
27,084 27,348 99.0 (96.6, 101		99.0 (96.6, 101.4)	0.80	27,084	28,100	96.4 (95.1, 97.7)	> 0.99

Figure 9. Sample report table of the individual registry report, showing internal and external completeness statistics. CI: Confidence Interval

Including probabilities above a threshold accounts for the vast differences in registry sizes. If a large registry (for example, Texas) and a small registry (for example, Vermont) each had an internal completeness score of 97, the likelihood that Vermont's value is a chance fluctuation is much higher than it would be for Texas, given Vermont's much smaller case load. Elsewhere we have used the liberal assumption that a probability above 20 percent meant that the registry's score was close enough to meet the threshold. Note that when a registry's score exactly meets the threshold, the probability of exceeding the threshold is exactly 50 percent—the addition or deletion of a single case would move the score to just above or just below the threshold.

The second table (Figure 10) shows the numbers of reported and expected cases and the associated internal and external completeness scores by cancer site. Registries may use this information as general guidance to help determine which specific sites may be underreported. Not every cancer site that is shown to be underreported using either the internal or external measures is necessarily problematic. Rather, registries should evaluate these measures based on knowledge of their own operations and examine further those that match their own experience. A low score on both measures would indicate a stronger candidate for review.

		Internal			External	
Site	Observed	Predicted (Delay-adjusted)	Completeness	Observed	Predicted	Completeness
All Sites	27,084	27,348	99.0	27,084	28,100	96.4
Brain and ONS	336	346	97.1	336	354	95.0
Breast (Female)	3,691	3,864	95.5	3,691	4,081	90.5
Cervix	238	229	103.9	238	213	111.7
Colon and Rectum	2,525	2,631	96.0	2,525	2,383	106.0
Corpus and Uterus NOS	665	684	97.3	665	788	84.4
Esophagus	284	284	99.9	284	292	97.1
Kidney and Renal Pelvis	1,083	1,090	99.3	1,083	1,066	101.6
Leukemia	690	683	101.0	690	761	90.7
Liver and IBD	506	542	93.3	506	526	96.1
Lung and Bronchus	3,929	3,865	101.7	3,929	4,237	92.7
Lymphoma	1,085	1,041	104.2	1,085	1,218	89.1
Melanoma of the Skin	1,330	1,510	88.1	1,330	1,351	98.5
Myeloma	440	424	103.7	440	465	94.7
Oral Cavity and Pharynx	802	822	97.6	802	752	106.7
Ovary	343	350	98.1	343	320	107.2
Pancreas	733	814	90.0	733	829	88.4
Prostate	3,894	3,618	107.6	3,894	3,547	109.8
Stomach	429	390	109.9	429	376	114.1
Urinary Bladder	1,099	1,123	97.9	1,099	1,168	94.1
Other Sites	2,982	3,090	96.5	2,982	3,373	88.4

(registry name) All Sites Completeness Estimates Submission Year = 2019; Diagnosis Year = 2017

Figure 10. Sample report table of individual registry report showing internal and external observed and expected cases by site. ONS: Other Nervous System, NOS: Not otherwise specified, IBD: Intrahepatic bile duct.

The third table (Figure 11) shows internal and external completeness scores by site and year. This table is intended to assist registries in getting a sense of how their reporting has performed over time.

						Inte	rnal											Exte	ernal					
					D	iagno	sis Ye	ar									D	iagno	sis Ye	ar				
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
All Sites			103	99	97	97	101	96	101	105	105	99	93	93	96	95	96	94	96	94	94	96	98	96
Brain and ONS		107	113	92	91	92	111	96	85	96	97	97	95	97	105	100	91	93	110	96	87	94	96	95
Breast (Female)		104	107	97	95	95	100	102	102	103	100	96	96	93	96	94	94	93	94	95	95	95	95	90
Cervix		124	95	116	94	101	115	105	115	108	111	104	98	112	94	112	98	99	117	105	108	103	115	112
Colon and Rectum		99	103	94	91	98	105	110	99	94	98	96	98	103	104	102	102	99	104	104	108	104	110	105
Corpus and Uterus NOS		101	102	95	102	93	95	98	103	98	96	97	85	82	81	77	86	79	83	81	85	85	79	84
Esophagus		109	96	103	97	101	92	99	90	107	95	100	96	101	95	102	100	105	94	104	93	105	96	97
Kidney and Renal Pelvis		95	102	103	94	90	103	93	93	99	97	99	90	93	97	102	101	95	105	101	99	104	104	102
Leukemia		123	112	101	90	99	100	97	102	101	100	101	76	93	93	93	82	84	82	83	86	86	88	91
Liver and IBD		113	117	103	103	103	95	102	93	98	101	93	78	81	90	83	89	99	84	92	84	89	96	96
Lung and Bronchus		100	105	100	98	97	97	95	95	100	103	102	98	95	102	95	97	97	99	93	94	94	94	93
Lymphoma			96	105	107	98	100	103	100	103	101	104	81	84	79	84	88	81	82	84	83	85	85	89
Melanoma of the Skin		103	102	99	89	84	109	89	94	123	124	88	97	98	105	108	109	101	105	88	86	98	105	98
Myeloma		102	99	105	117	93	105	108	109	104	112	104	84	91	83	87	95	79	86	89	92	90	98	95
Oral Cavity and Pharynx		92	98	98	101	93	101	99	96	100	102	98	125	109	111	109	113	104	112	107	105	105	108	107
Ovary				104	97	95	103	105	100	97	99	98	94	90	103	99	98	95	105	108	100	101	105	107
Pancreas		102	116	97	105	110	94	94	96	100	102	90	92	90	104	92	100	105	94	97	95	96	99	88
Prostate		103	94	95	94	92	90	95	94	113	117	108	95	93	94	97	102	99	103	102	99	105	108	110
Stomach			113	84	107	109	107	98	108	95	102	110	83	97	98	90	95	100	101	96	105	99	103	114
Urinary Bladder		105	101	98	105	103	92	105	95	97	93	98	85	89	89	85	95	94	85	98	90	91	90	94
Other Sites		102	109	100	96	95	96	97	99	102	100	97	84	86	90	87	86	84	84	84	86	90	93	88

(registry name) Completeness Estimates by Site and Diagnosis Year Submission Year = 2019

Figure 11. Sample report Table of individual registry report showing internal and external completeness estimates by site and diagnosis year. ONS: Other Nervous System, NOS: Not otherwise specified, IBD: Intrahepatic bile duct.

Finally, the report contains the five secondary process measures that have been presented previously in this report, with the recipient registry's own data points labeled. See Appendix A.6 for full sample state reports.

A Note on Scale

In general, when using external methods, the expected count across all registries is set equal to the observed count across all registries, meaning that the average observed/expected ratio is 1 (or 100%) and that roughly half of registries will be above this value and roughly half below. Because most central registries in the United States are believed to have close to 100 percent completeness, the observed/expected ratio often is treated as if it is a direct measure of completeness, which is not true. Completeness has an upper limit of 100 percent, which is reached when all cancer diagnoses have been reported. The external completeness measure has an *average* of 100 percent, which is quite different. Although an average score of 100 percent is a familiar convention, there is no mathematical requirement for this, and it could be rescaled to any other value. For example, the average registry could be set at 800 so that the range in a typical year would be around 680 to 920, with values less than 720 of special concern. We encourage a change in the way the external completeness measure is discussed, replacing the concept of a percentage with that of a score or value, regardless of whether any rescaling is applied.

Summary and Suggestions for Further Development

This report has presented a multifactorial approach for assessing the completeness of case reporting to central cancer registries that draws on multiple independent measures. This approach yields completeness measures that are more robust than methods that have been used historically, while at the same time being more liberal, in the sense that incorporating a

broader set of criteria makes it less likely that a registry will be incorrectly identified as having data that is insufficiently complete.

These measures were presented to a cross-section of NPCR registries on December 21, 2020, to a positive reception. Our recommendation is that all NPCR-funded registries be given time to evaluate the proposed approach in depth and assess the implications for their own data before proceeding with any implementation. NAACCR plans to work closely with registries and the NPCR program to help registries explore these measures.

Once again, note that the various cutoffs and threshold values included here are for illustration only and include a mixture of values that have been used historically and others that have not been. The focus should not be on these threshold values but rather on the methods that generated them. After these indicators have been evaluated fully by the surveillance community, we may begin to discuss the utility and benefit of establishing common thresholds. In reviewing their reports, registries should consider each of the measures, even where they seem to contradict.

Over the long term, the delay factor is a quite good estimate of completeness. That the national delay factor at the 24-month submission point for all sites combined is about 1.04 means that registries were about 96 percent complete at the time of submission, assuming all cases were eventually reported. Obviously, because some cases will never be reported, this 96 percent represents an overestimate, but not a particularly large one. Registries employ many processes to capture delinquent cases and have a good sense based on decades of experience of where problems lie. It may not seem possible to quantify the never-reported cases, but this is not an uncommon problem in science. The field of wildlife ecology, for example, is routinely tasked with the problem of estimating a population size based only on limited sightings of animals, and a rich methodological literature exists around this problem.

Assume that after taking this into consideration, the average registry completeness at the time of 24-month submission ticks down to 95 percent. The question, then, is how to identify which registries are well below that. We obviously cannot wait 4 or more years to get the answer by seeing how the late cases trickle in. In fact, it would be nice to know this even sooner than 24 months, if possible. (Appendix A.4 discusses the implication of looking at data completeness after 12 months). One way to tackle this problem would be to take a deep dive into a large and representative sample of cases that were reported after 2 years to ascertain the pathways and mechanisms by which this happened. Are facilities sending in their cases years after the due date, are these cases coming from nontraditional reporting sources, are they coming out of suspense files within registries themselves because of past data quality issues or because of an oversight, are they patients who lived in multiple states or countries? Such a deep dive would not only help better predict what an initial completeness score might be, but also give registries immediate guidance in how to attack these problems at the present moment. An analysis of this type was not possible with a team comprising members not affiliated with central registries, with no access to this level of data. But it is something that could be undertaken within the existing NAACCR volunteer structure.

With respect to the methods described in this document, opportunities exist to refine them further. For example, in the external method, although no additional census or BRFSS or AHRF variables were found to significantly improve the model globally, it may be the case that additional variables would help on a site-specific basis. For example, there was some indication that one or more socioeconomic variables improved the predictions of breast cancer. For the secondary process measures, it may be possible to develop additional site-specific measures

beyond the ones proposed here for leukemia/myeloma and brain cancer. As with most aspects of our field, the models and methods are ever-changing, and the topic of data completeness should continue to be viewed as dynamic rather than closed. Increased emphasis on ensuring that registries are carrying out processes that increase confidence in the completeness of their data is warranted.

References

Centers for Disease Control and Prevention. 2020. Diagnostic confirmation, U.S. Data (2001-). Accessed February 26, 2021. https://www.cdc.gov/cancer/uscs/public-use/dictionary/diagnostic-confirmation.htm

Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholt-Sloan JS. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. *Neuro-Oncology* 2020; 22(1): Supplement.

The Statistical Expert Panel comprised a broad-based constituency including thought leaders in biostatistics of cancer surveillance. Members include the following:

Frank Boscoe, Ph.D., Pumphandle, LLC Eric J Feuer, Ph.D., Li Zhu, Ph.D., NCI Joshua Sampson, Ph.D., NCI Trevor Thompson, CDC Joe Zhou, IMS

Additional Contributors—NAACCR staff and consultants and registry directors.

Special thanks to Rocky Feuer, Li Zhu, and Joshua Sampson of NCI who donated countless inkind hours to this project. Please note that the opinions and recommendations expressed here are not intended to reflect policy of the NCI SEER Program. Appendix A: Completeness Statistical Report

Appendix A.1 Internal Method

Case and Geography Definition. The internal method uses cases with International Classification of Diseases (ICD)-O-3 behavior codes of malignant, malignant only in ICD-O-3, and only malignant 2010+. The same behavior codes are used in the external method. The small differences in the two are because the external method requires age and sex to be known and excludes those cases with missing values for either of these variables. The cases on all cancer sites combined and 20 individual cancer sites are taken as input to the model described below. The Joinpoint model and delay adjustment are applied separately for all sites combined and for each of the individual sites. Unlike in the external model, we do not sum the completeness measures of individual sites to get the measure of all sites combined. Expected case counts are computed for all state registries, plus the District of Columbia, Detroit, Seattle, the three California substate registries, and Puerto Rico, for a total of 57.

Joinpoint. Joinpoint Trend Analysis Software (<u>https://surveillance.cancer.gov/joinpoint/</u>) is a statistical software developed by the National Cancer Institute that models time trends where several different line trends are connected at "joinpoints." This project has 16 input data points representing diagnosis years 2001 through 2016. We allow up to three time trends (two joinpoints) in these data, where the initial (starting in 2001) and final (ending in 2016) trends must contain at least three points and the middle trend must contain at least four time points. We used the last four years' (2013–2016) average annual percent change (AAPC) to project one year ahead to 2017. AAPC is a weighted average of the trend coefficients of the underlying joinpoint model, with weights proportional to the length of each trend segment. In the case of a sudden increase or drop during the last trend segment, using AAPC helps to alleviate the abrupt change and provides a smoother projected value.

Delay Adjustment. The expected number of cases is adjusted by the ratio of a registry's own delay factor to that of the nation. The motivation is to credit the registries with below-average delay factors for the timeliness of their case reporting. In 2017, the nationwide delay factor across all cancer sites was 1.04. Any registry with a delay factor of less than 1.04 will get a reduced expected count than that projected in Joinpoint, hence a higher completeness percent. The delay adjustment is applied for all sites combined and for each of the individual cancer sites. If a registry or a site does not have a specific delay factor, then the adjustment is not applied for the specific registry/site combination.

The projected count from Joinpoint is adjusted by the delay factors as follows:

Delay-adjusted expected count = Joinpoint projected count × Delay-adjustment factor,

where Delay-adjustment factor = $\frac{\text{Registrydelayfactor}}{\text{Nationaldelayfactor}}$

The completeness measure is then calculated as:

 $Completeness = \frac{Observedcasecount}{Delay - adjustedexpectedcount} \times 100$

Evaluation of Completeness for the Current Year and Prior Years. The most recent cases were reported in 2019 for diagnosis years 2017 and before, with 2 years or longer in reporting delay. Every year, North American Association of Central Cancer Registries (NAACCR)

certificates the central registries based on data qualities, of which completeness is an important criterion. To evaluate the diagnosis (Dx) 2017 completeness, the case count from the 2019 submission was the observed count, and the expected count was modeled through joinpoint regression and adjusted for delay factors (described below) using all 2-year delay case counts from Dx 2001 (reported 2003) through Dx 2016 (reported 2018).

In the 2019 data submission, all prior years' data also are supplemented with new cases, and completeness measures are assessed for fit for use. Prior years' completeness measures are evaluated with previous reporting years' submissions, with longer reporting delays. For example, with the data submission in 2019 for Dx 2016 data, there is a 3-year reporting delay. All observed counts for Dx 2001 (report 2004 with a reporting delay of 3 years) through Dx 2015 (reported 2018) are put into the joinpoint model. The earliest completeness we can evaluate with this method is for Dx 2006, with a 13-year reporting delay. One less data point is put into the trend for each successive delay because the trends start with diagnosis year 2001. The maximum number of joinpoints is reduced in accordance with the default algorithms used in the Joinpoint software.

Uncertainty Measure. In addition to the point estimate of the completeness measure, we also estimate the variance of the completeness measure. Because completeness is the ratio of the observed to the expected counts, we need to consider the uncertainty measure in both the numerator and the denominator and apply the delta method to estimate the uncertainty in the ratio.

The numerator in the ratio —the observed count (0) — is assumed to follow a Poisson distribution with mean μ . The denominator — the delay-adjusted expected count (W) — is the joinpoint-projected count multiplied by the delay-adjustment factor described above. The variance estimate of the denominator is the square of the delay-adjustment factor multiplied by the variance of the joinpoint projection. Both the mean E(W) and the variance Var(W) of the projection are estimated by the Joinpoint software.

We then apply the delta method to estimate the variance of the ratio of the observed count over the delay-adjusted expected count as:

$$Var\left(\frac{O}{W}\right) = \frac{1}{[E(W)]^2} Var(O) + \frac{\mu^2}{[E(W)]^4} Var(W).$$

The variance of *W*, the joinpoint projected count, is calculated using the following procedure:

Let Y = log(W), so Y is the logarithm transformation of W.

Case 1: AAPC \geq 0 and AAPC = last segment's annual percent change (APC)

$$Y = \hat{Y}_k$$

Notation: x = k-year ahead location. For example, x = 2017, the last segment starting from Dx 2010, ending at Dx 2016. Then $x_1, ..., x_7 = 2010, ..., 2016$, and $\bar{x} = 2013, n = 7$. Suppose the slope of the last segment is β , then

$$Var(Y) = \sigma^2 \left[1 + \frac{1}{n} \right] + Var(\beta)(x - \bar{x})^2,$$

where σ^2 estimated by mean squared error (MSE) and $Var(\beta)$ is estimated by $SE(\beta)^2$. Note that MSE and $SE(\beta)$ are found in the Joinpoint output, both based on the log-scale *Y*.

Case 2: AAPC \geq 0 and AAPC \neq last segment's APC

$$Y = \hat{Y}_k$$

The 4-year AAPC is between Dx 2013 and Dx 2016. Suppose the location at Dx 2013 is x_a and the location at Dx 2016 is x_b . The corresponding fitted values are \hat{Y}_a and \hat{Y}_b , respectively. The variance of Y is then

$$Var(Y) = \sigma^{2} + Var(\hat{Y}_{b}) + \frac{k^{2}}{9} \left[Var(\hat{Y}_{b}) + Var(\hat{Y}_{a}) \right] + \frac{2k}{3} Var(\hat{Y}_{b})$$
$$Var(\hat{Y}_{b}) = \sigma^{2} \left[\frac{1}{n} + \frac{(x_{b} - \bar{x})^{2}}{\Sigma(x_{i} - \bar{x})^{2}} \right] = \frac{\sigma^{2}}{n} + Var(\beta_{b})(x_{b} - \bar{x})^{2}$$
$$Var(\hat{Y}_{a}) = \sigma^{2} \left[\frac{1}{m} + \frac{(x_{a} - \bar{z})^{2}}{\Sigma(z_{i} - \bar{z})^{2}} \right] = \frac{\sigma^{2}}{m} + Var(\beta_{a})(x_{a} - \bar{z})^{2},$$

where $x_1, ..., x_n$ are the last segment; $z_1, ..., z_m$ are the segment where x_a is located; β_b is the slope of the last segment; β_a is the slope of the segment, where x_a is located; and \bar{x} is the mean of $x_1, ..., x_n$. \bar{z} is the mean of $z_1, ..., z_m$.

Also, σ^2 is estimated by MSE. $Var(\beta_a)$ is estimated by $SE(\beta_a)^2$. $Var(\beta_b)$ is estimated by $SE(\beta_b)^2$. $E(\hat{Y}_a)$ is estimated by \hat{Y}_a . $E(\hat{Y}_b)$ is estimated by \hat{Y}_b .

Case 3: AAPC < 0, then $Y = \hat{Y}_0$.

To predict x = 2017. If the location at Dx 2016 is x_b ,

$$Var(Y) = \sigma^2 \left[1 + \frac{1}{n} \right] + Var(\beta)(x_b - \bar{x})^2,$$

where $x_1, ..., x_n$ are the last segment and \bar{x} is the mean of $x_1, ..., x_n$.

Once the variance of Y is obtained, we then use the delta method to find the variance of W by

$$Var(W) \approx Var(Y) \times (exp(Y))^2$$
.

Probability the Completeness is Greater Than a Cutoff Point. The completeness measure is assumed to follow a normal distribution. Once the point estimate and the variance estimate of the completeness measure are available, we can calculate the probability that the completeness measure of a registry exceeds a desired threshold value of 98 percent. Then, we are able to identify registries with low probabilities of exceeding the threshold, less than 0.2 or 0.4. This approach incorporates the higher variability in data from smaller registries and minimizes any bias in the completeness measure due to registry size.

Missing Data. Not all registry/year/site combinations are presented. In the following four situations, the data are not included as input:

- 1. For diagnosis year 2005, for all reporting years, Alabama, Louisiana, Mississippi, and Texas only reported about half of the cases due to hurricane Katrina and were excluded.
- Some of the zeros were obviously wrong in the database; therefore, we removed all of the them. Some true zeros also were removed. The assumption is that they will be removed in the next step if not here.

- 3. Joinpoint was run if there were more than five data points and the mean number of observations was at least 50. If there were less than five data points or if the average count across years was less than 50, then there was no Joinpoint model estimate.
- 4. Some data points were detected as outliers and, hence, were excluded from the data input. In the case where the outlier exclusion resulted in less than five input points or less than 50 average counts, there was no Joinpoint model estimate. The details of outlier detection are described in the next section.

Outlier Detection. In reviewing the joinpoint trend plots of the case counts and expected counts, we found some registries had an "outlier" year during the 16-year period when the observed counts were either too high or too low relative to the joinpoint estimate. Because these outliers bias the overall time trends, we developed a metric to detect outliers and remove them from the trend calculations. The metric is a nonparametric version of the goodness-of-fit measure. Specifically, it is the ratio of the residual (the difference in the log-transformation between the observed and the estimated counts) over the median of the residual. This ratio has been shown to follow a standard normal distribution. Any data point with a ratio below -2 or above 2 was deemed to be an outlier and was removed from the input data. Joinpoint was then rerun after the removal of the outliers. If the last data point in the joinpoint model is removed as an outlier, then a 2-year projection is applied to get the projected count for the completeness calculation. The resulting joinpoint models thus are unbiased with respect to the outliers.

Appendix A.2 External method

Case and Geography Definition. The external method uses cases with ICD-O-3 behavior codes of malignant, malignant only in ICD-O-3, and only malignant 2010+. The same behavior codes are used in the internal method. The small differences in the two are because the external method requires age and sex to be known and excludes those cases with missing values for either of these variables. Expected case counts are computed for all state registries, plus the District of Columbia, Detroit, Seattle, and the three California sub-state registries, for a total of 56. Puerto Rico presently is not included in the external method because race information is missing; if all cases are taken to be Hispanic, then this can be computed, but this decision was not reached before the time of this report.

B1. Here, we offer the details on the regression approach. We build nearly 40 regression models. Specifically, we build separate regression models for each cancer type and gender pair (e.g., lung cancer in women). For building each model, we start with a data set that includes the cancer incidence and covariates for each combination of cancer registry, age group, race/ethnicity, reporting year, and calendar year. Because we have 56 registries, 10 age groups $(0-4, 5-14, \dots 75-84, 85+)$; four race/ethnicity categories (White, Black, Hispanic, and other); five reporting years (2015–2019); and 13 calendar years prior to each reporting year, each data set has approximately $56 \times 10 \times 4 \times 5 \times 13 = 145,600$ observations. This value may grow as we add additional registries. We then build a regression model to predict cancer incidence using this data set as described next.

Let *k* index the gender/cancer-type pairing and *i* index the 145,600 observations within that data set. Let Y_{ki} denote the number of cancers, $\lambda_{ki} = E[Y_{ki}]$, n_{ki} denote the population size, $\{A_{ki2},...,A_{ki10}\}$ denote age groups, $\{R_{ki2}, R_{ki3}, R_{ki4}\}$ denote race/ethnicity, $\{C_{ki2},...,C_{ki5}\}$ denote calendar year, and $\{D_{ki2},...,D_{ki13}\}$ denote reporting delay. Finally, let $\{M_{ki1},...,M_{ki4}\}$ be a set of variables that represent log-mortality, which are derived using a natural spline with knots at the 20th, 50th, and 80th percentiles of the positive values. We then fit the following model using Poisson regression with a robust variance estimator.

 $\log(\lambda_{ki}) =$

$$\beta_{ko} + \sum_{j=2}^{10} \beta_{kAj} A_{kij} + \sum_{j=2}^{4} \beta_{kRj} R_{kij} + \sum_{j=2}^{5} \beta_{kCj} C_{kij} + \sum_{j=2}^{13} \beta_{kDj} D_{kij} + \sum_{j=1}^{4} \beta_{kMj} M_{kij} + \log(n_{ki})$$
(1)

To simplify the notation, we let X denote all 33 variables (intercept, age, race, etc.) and rewrite equation (1) as

$$\log(\lambda_{ki}) = \sum_{j=1}^{33} \beta_{kj} X_{kij} + \log(n_{ki}) = \beta_k X_{ki} + \log(n_{ki})$$
(2)

After fitting equation (2) separately for each of the approximately 40 data sets, we then can estimate the expected cancer rates for a given registry, calendar year, and delay period by $\hat{Y} = \sum_{k} \sum_{i \in \Omega} \hat{\lambda}_{ki} = \sum_{k} \sum_{i \in \Omega} n_i exp(\hat{\beta}_k X_{ki})$, where Ω indexes the relevant observations. Letting $Y = \sum_{k} \sum_{i \in \Omega} Y_{ki}$ denote the total number of observed cases, we estimate completeness as $\hat{C} = 100 \times Y/\hat{Y}$. We can calculate the standard error (SE) using the delta method (Appendix A.2). Therefore, we report the 95 percent confidence interval as $\hat{C} \pm 1.96SE$ and the probability of exceeding a prespecified threshold, \underline{c} , by P(Z > c), where $Z \sim N(\hat{C}, SE^2)$.

We considered two modifications to model 2. First, we considered including additional covariates (e.g., smoking rates, poverty levels, obesity rates),

$$\log(\lambda_{ki}) = \sum_{j=1}^{33} \beta_{kj} X_{kij} + \sum_{l=1}^{p} \alpha_{kl} W_{kil}$$
(3)

where $\{W_{ki1},...,W_{kip}\}\$ are the *p* additional variables relevant for the kth gender and cancer pair (i.e., not all 33 variables will be relevant for each cancer type). Second, we considered using county-level data. The data sets now would include cancer incidence for each combination of county (as opposed to cancer registry), age group, race/ethnicity, reporting year, and delay year. Given that approximately 3,000 counties are in the United States, each data set includes approximately 3,000 × 10 × 4 × 5 × 13 = 7,800,000 observations.

B2. We can obtain the SE for the external estimate of completeness \hat{C} . Referring to equation 2, we assume that $\sqrt{N}(\hat{\beta}_k - \beta_k) \sim N(0, \Sigma_k)$, let $\hat{\Sigma}_k$ be the robust variance estimator, and denote the needed derivatives by

$$\dot{g}_k^T = \left[\sum_{i \in \Omega} X_{ki1} n_i exp(\hat{\beta}_k X_{ki}), \dots, \sum_{i \in \Omega} X_{ki33} n_i exp(\hat{\beta}_k X_{ki})\right].$$

Then, by the delta method, we assume

$$\left(\sum_{i\in\Omega}n_{ki}\exp(\hat{\beta}_{k}X_{ki})-\sum_{i\in\Omega}n_{ki}\exp(\beta_{k}X_{ki})\right)\sim N(0,\dot{g}_{k}^{T}\hat{\Sigma}_{k}\dot{g}_{k})\equiv N(0,\hat{\sigma}_{kE}^{2})$$

Moreover, letting $\hat{\sigma}_{kV}^2 = \sum_{i \in \Omega} Y_{ki}$, $\hat{\lambda}_k = \sum_{i \in \Omega} n_i exp(\hat{\beta}_k X_{ki})$, $\hat{\lambda} = \sum_k \hat{\lambda}_k$, $\hat{\sigma}_E^2 = \sum_k \hat{\sigma}_{kE}^2$, and $\hat{\sigma}_V^2 = \sum_k \hat{\sigma}_{kV}^2$, we estimate the distribution of completeness by

$$(\hat{\mathcal{C}} - \mathcal{C}) \sim N(0, (\hat{\mathcal{C}}^2 \hat{\sigma}_E^2 + \hat{\sigma}_V^2) / \hat{\lambda}^2) \equiv N(0, \hat{\sigma}_C^2).$$

Appendix A.3. List of Additional Variables Considered for External Method

Age and Sex

Percentage of persons under 18 years of age Percentage of persons 65 years and over Percentage of female-headed households

Education

Percentage of persons 25 years and over with at least a bachelor's degree Percentage of persons 25 years and over with less than 9th grade education

Employment

Percentage of persons 16 years and over who are unemployed Percentage of white collar workers

Income

Median household income Percentage of families below poverty Percentage of persons below poverty

Geography

Land area in square miles Population density Percentage of persons in rural areas Percent migrating between states

Housing

Percentage of households with more than one person per room

Language

Percentage of households that is isolated linguistically

Race/Ethnicity/National Origin

Percent Hispanic Percent foreign born Percent non-Hispanic American Indian and Alaska Native alone Percent non-Hispanic Black alone Percent non-Hispanic White alone

Cancer Outcomes

Relative survival

Health Behaviors

Percentage of adults with a body mass index greater than 25 Percentage of females who ever smoked Percentage of males who ever smoked

Health Insurance

Percentage of females less than 65 years without insurance Percentage of males less than 65 years without insurance

Medical Care and Screening

Hospitals per 1,000 population

Doctors per 1,000 population

Percentage of individuals meeting age-appropriate colorectal cancer-screening guidelines Percentage of women meeting age-appropriate breast cancer-screening guidelines Percentage of women meeting age-appropriate cervical cancer-screening guidelines Percentage of men over age 50 years receiving a prostate-specific antigen test in the past year

Appendix A.4 Potential Use of January (12-month) NAACCR Submissions for Reporting National Cancer Statistics

The data submitted to NAACCR in November is used to report cancer statistics for cases diagnosed through 2 years earlier. For example, the November 2020 submission will be used to produce statistics diagnosed through the end of 2018. This data submission also is known as 24-month data because the time between the submission and 2 years earlier is 24 months. Since 2013, NPCR-funded registries have made a second submission to produce the first report on cases diagnosed through the previous year. This submission is due in January, but many registries submit it at the same time because their other submission is due in November. This is known as 12-month data, although given the range of submission times, it is technically 11- to 13-month data. With an interest in making population-based cancer registry reporting more timely, a natural question is whether the 12-month data are complete enough for the reporting of national cancer statistics.

To answer this question, it is useful to look at the experience of SEER registries. Since 2011, SEER registries have been making their second submission in February, one month later than NPCR registries, effectively making it 14-month data, although it often is referred to as 12-month data as well. After the first four such submissions, an article was published titled "Early estimates of SEER cancer incidence for 2012: approaches, opportunities, and cautions for obtaining preliminary estimates of cancer incidence" (*Cancer* 2015; 121(12): 2053-2062). This paper found that although fewer cases were reported in the February submissions than in the subsequent November submissions, the amount of under-reporting was not that large and was fairly consistent over time. This allowed the authors to adjust for the under-reporting of rates from the February submissions by extending the reporting delay model, which had been previously used for November submissions.

Reporting delay factors represent a multiplier by which rates should be adjusted to account for additional cases that will come in eventually. For example, a factor of 1.05 means that the rates should be adjusted upward by 5 percent. For SEER November submissions, reporting delay factors range from about 1.025 to 1.15 depending on the cancer site, with the largest factors for leukemia, lymphoma, and myeloma. For the SEER February submissions, the factors are usually about twice as large, ranging from about 1.05 to 1.30. They also found that Joinpoint trends estimated using the February submission were very close to trends estimated using the subsequent November submission. This analysis provided confidence that preliminary estimates of rates and trends could be released earlier than the typical delay of 28 months (23 months for reporting and then an additional 5 months for processing before being released in April. National Cancer Institute published preliminary rates and trends in the journal *Cancer* for the next 3 years (122(10): 1579-1587, 123(13): 2524-2534, 124(10): 2192-2204) and on the SEER website in 2019 (https://seer.cancer.gov/statistics/preliminary-estimates/).

For these estimates to be valid, there must be consistency in the under-reporting over time because the delay model uses the history of reporting delays to predict future delays. For example, the February 2020 submission, including cases diagnosed through 2018, was thought to be more under-reported than prior February submissions due to delays in the release of updated coding software to registries. Consequently, no preliminary estimates were published this year.

To evaluate the potential of using NAACCR submissions to produce preliminary rates and trends, we computed the ratio of cancer counts by registry for the January to subsequent

November submissions for selected cancer sites for submissions in 2013, 2014, 2015, and 2016. They are displayed for all sites, colon and rectum, female breast, lung, and prostate cancers in Figures 12 through 16. Each of the 69 registries that submitted data to NAACCR, including Canadian registries, is displayed in a column with a dot for each of the four ratios. sorted by the 2013 ratio. Registries were assigned random reference codes to prevent identification. The figures allow one to view the average level of the ratios for each registry, as well as their variability, which as previously described is a key to estimating delay factors with reasonable predictive ability. Missing data points indicate missing 12-month submissions and/or subsequent 24-month submissions that did not meet minimum NAACCR certification standards. We chose a ratio of 0.8 as an ad hoc cut point for ratios sufficiently high for delay modeling. requiring that registries met this threshold in at least 3 of the 4 years. Thirty-three registries met this threshold for all sites combined, and 36 met this threshold for colorectal and breast cancers, but only 24 reached the threshold for lung and bronchus cancer and 23 for prostate cancer. The reasoning behind the choice of 0.8 is as follows: Assume that these each of these cancers had an average reporting delay factor of 1.05 based on the subsequent November submission. making the ratio of the cases from that submission to the final count years later $1 \div 1.05 = 0.95$. Then, a 12- to 24-month ratio of 0.8 translates to a delay factor of $1 \div (0.8 \times 0.95) = 1.3$, which is among the largest delay factors for the SEER February submissions. Note that delay factors for cancers beyond these most common sites may be substantially larger.

Further evaluation would be necessary to determine whether the rates or trends from the 12-month NPCR submission could be utilized reliably. The ratios in Figures 12 through 16 should be updated to include data for 2017–2020. The delay model then could be run for registries where a majority of the ratios are greater than 80 percent. Similar to what was done with the SEER registries, evaluations should be conducted to determine how well the 12-month delay-adjusted rates and joinpoint trends track the 24-month delay-adjusted rates and joinpoint trends track the 24-month delay-adjusted rates and joinpoint trends track the 24-month delay-adjusted rates and joinpoint trends track the 12-month delay-adjusted rates and joinpoint trends track the 24-month delay-adjusted rates and joinpoint trends. Depending on these results, a stricter registry inclusion threshold than 0.8 may be necessary. These preliminary results show some promise for early reporting but only for roughly half of all registries.

Appendix A.5 Completeness Estimates

All Sites Completeness Estimates

Submission Year = 2019; Diagnosis Year = 2017

			Internal				External	
Registry	Observed	Predicted (Delay Adjusted)	Completeness (95%Cl)	P(Completeness>98)	Observed	Predicted	Completeness (95%CI)	P(Completeness>92)
Alabama	27084	27348	99.0 (96.6, 101.4)	0.80	27084	28100	96.4 (95.1, 97.7)	>0.99
Alaska	2917	2824	103.3 (93.0, 113.6)	0.84	2917	3001	97.2 (93.6, 100.8)	>0.99
Arizona	32424	33295	97.4 (93.2, 101.5)	0.39	32424	36512	88.8 (87.7, 89.9)	<0.01
Arkansas	kansas 17474 176		99.1 (94.8, 103.4)	0.70	17474	17263	101.2 (99.6, 102.8)	>0.99
California	lifornia 170786 1658		103.0 (100.7, 105.3)	>0.99	170784	173792	98.3 (97.5, 99.0)	>0.99
Colorado	24226	23401	103.5 (99.8, 107.3)	>0.99	24226	25897	93.5 (92.2, 94.8)	0.99
Connecticut	21297	20704	102.9 (100.0, 105.8)	>0.99	21297	19686	108.2 (106.6, 109.8)	>0.99
Delaware	5617	6088	92.3 (87.6, 96.9)	0.01	5617	5716	98.3 (95.6, 100.9)	>0.99
Detroit	23009	22567	102.0 (98.4, 105.5)	0.99	23009	21640	106.3 (104.8, 107.8)	>0.99
District of Columbia	2907	2562	113.5 (102.8, 124.1)	>0.99	2907	2888	100.7 (96.9, 104.4)	>0.99
Florida	124804	126573	98.6 (94.7, 102.5)	0.62	124804	126932	98.3 (97.5, 99.1)	>0.99
Georgia	52690	52522	100.3 (96.1, 104.5)	0.86	52690	50744	103.8 (102.8, 104.9)	>0.99
Greater Bay	33523	31841	105.3 (101.5, 109.1)	>0.99	33523	32644	102.7 (101.4, 103.9)	>0.99
Greater California	97280	93882	103.6 (99.4, 107.8)	>0.99	97278	99502	97.8 (96.9, 98.6)	>0.99
Hawaii	7561	7183	105.3 (100.8, 109.7)	>0.99	7561	6382	118.5 (115.6, 121.3)	>0.99
Idaho	8624	8769	98.4 (92.9, 103.8)	0.55	8624	8791	98.1 (96.0, 100.3)	>0.99

			Internal				External	
Registry	Observed	Predicted (Delay Adjusted)	Completeness (95%Cl)	P(Completeness>98)	Observed	Predicted	Completeness (95%Cl)	P(Completeness>92)
Illinois	69222	68393	101.2 (97.9, 104.5)	0.97	69222	66994	103.3 (102.4, 104.3)	>0.99
Indiana	34318	35605	96.4 (93.5, 99.3)	0.14	34318	36643	93.7 (92.5, 94.8)	>0.99
lowa	18600	18081	102.9 (100.3, 105.4)	>0.99	18600	17795	104.5 (102.9, 106.1)	>0.99
Kansas	15303	15210	100.6 (98.0, 103.3)	0.97	15303	15394	99.4 (97.7, 101.1)	>0.99
Kentucky	27714	27540	100.6 (98.4, 102.9)	0.99	27714	26067	106.3 (104.9, 107.7)	>0.99
Los Angeles	40003	39888	100.3 (97.5, 103.1)	0.94	40003	42239	94.7 (93.6, 95.8)	>0.99
Louisiana	26114 2529		103.3 (101.1, 105.4)	>0.99	26114	25216	103.6 (102.2, 104.9)	>0.99
Maine	9061	8756	103.5 (99.4, 107.5)	>0.99	9061	9001	100.7 (98.5, 102.8)	>0.99
Maryland	31735	31972	99.3 (95.1, 103.4)	0.73	31735	31297	101.4 (100.1, 102.7)	>0.99
Massachusetts	37769	36452	103.6 (100.0, 107.3)	>0.99	37769	37138	101.7 (100.5, 102.9)	>0.99
Michigan	54674	54169	100.9 (96.8, 105.1)	0.92	54673	57573	95.0 (94.0, 95.9)	>0.99
Minnesota	31152	30666	101.6 (96.9, 106.3)	0.93	31152	29300	106.3 (105.0, 107.6)	>0.99
Mississippi	16548	16168	102.4 (97.5, 107.2)	0.96	16548	16633	99.5 (97.9, 101.1)	>0.99
Missouri	34380	34166	100.6 (97.1, 104.1)	0.93	34379	35271	97.5 (96.3, 98.6)	>0.99
Montana	6426	6278	102.4 (94.5, 110.2)	0.86	6426	6096	105.4 (102.8, 108.1)	>0.99
Nebraska	10411	10359	100.5 (97.2, 103.8)	0.93	10411	9992	104.2 (102.1, 106.3)	>0.99
Nevada	12963	13184	98.3 (87.2, 109.5)	0.52	12963	15026	86.3 (84.7, 87.8)	<0.01
New Hampshire	8532	8466	100.8 (96.8, 104.7)	0.92	8532	8128	105.0 (102.7, 107.3)	>0.99
New Jersey	52654	50531	104.2 (99.7, 108.7)	>0.99	52654	46614	113.0 (111.8, 114.1)	>0.99
New Mexico	9263	9127	101.5 (96.9, 106.1)	0.93	9261	10312	89.8 (87.9, 91.7)	0.01
New York	115010	111292	103.3 (100.2, 106.5)	>0.99	115007	101751	113.0 (112.1, 113.9)	>0.99

			Internal				External	
Registry	Observed	Predicted (Delay Adjusted)	Completeness (95%Cl)	P(Completeness>98)	Observed	Predicted	Completeness (95%Cl)	P(Completeness>92)
North Carolina	57041	56633	100.7 (95.7, 105.8)	0.85	57038	55844	102.1 (101.1, 103.2)	>0.99
North Dakota	3878	3853	100.6 (95.0, 106.3)	0.82	3878	3775	102.7 (99.4, 106.0)	>0.99
Ohio	67167	67152	100.0 (96.2, 103.9)	0.85	67167	68366	98.2 (97.3, 99.2)	>0.99
Oklahoma	19807	20297	97.6 (94.6, 100.5)	0.39	19807	21064	94.0 (92.6, 95.4)	>0.99
Oregon	21528	21236	101.4 (95.5, 107.3)	0.87	21528	23081	93.3 (91.9, 94.6)	0.97
Pennsylvania	79341	79522	99.8 (96.9, 102.6)	0.89	79340	76769	103.3 (102.4, 104.3)	>0.99
Puerto Rico			84.8 (74.4, 95.2)	0.01	Data not available	Data not available	Data not available	Data not available
Rhode Island	5761	6036	95.4 (90.2, 100.7)	0.17	5761	5939	97.0 (94.4, 99.6)	>0.99
Seattle	27537	27022	101.9 (98.7, 105.1)	0.99	27537	25304	108.8 (107.4, 110.2)	>0.99
South Carolina	27762	28379	97.8 (93.3, 102.3)	0.47	27762	28894	96.1 (94.8, 97.3)	>0.99
South Dakota	4739	4848	97.8 (90.7, 104.9)	0.47	4739	4738	100.0 (97.1, 102.9)	>0.99
Tennessee	37623	36567	102.9 (98.3, 107.5)	0.98	37623	38190	98.5 (97.4, 99.7)	>0.99
Texas	114402	112266	101.9 (97.9, 105.9)	0.97	114402	120363	95.0 (94.3, 95.8)	>0.99
Utah	10942	10556	103.7 (99.6, 107.7)	>0.99	10942	11397	96.0 (94.1, 97.9)	>0.99
Vermont	3901	3670	106.3 (101.1, 111.6)	>0.99	3901	3933	99.2 (96.0, 102.3)	>0.99
Virginia	39840	40167	99.2 (93.0, 105.3)	0.65	39839	43874	90.8 (89.8, 91.8)	0.01
Washington	37522	37131	101.1 (98.4, 103.7)	0.99	37522	37464	100.2 (99.0, 101.3)	>0.99
West Virginia	12143	11836	102.6 (97.1, 108.1)	0.95	12143	12011	101.1 (99.2, 103.0)	>0.99
Wisconsin	32655	33091	98.7 (93.6, 103.7)	0.60	32655	32512	100.4 (99.2, 101.7)	>0.99
Wyoming	2874	2732	105.2 (96.6, 113.8)	0.95	2874	3016	95.3 (91.8, 98.8)	0.97
Utah	10942	10556	103.7 (99.6, 107.7)	>0.99	10942	11397	96.0 (94.1, 97.9)	>0.99

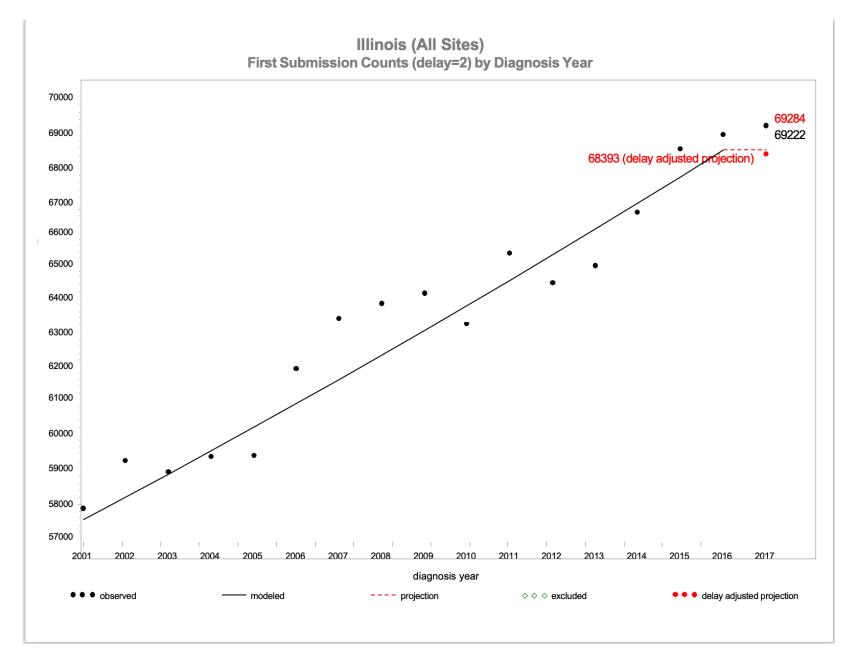
Appendix A.6 Sample Individual State Reports

Full reports for all states can be found <u>here</u>.

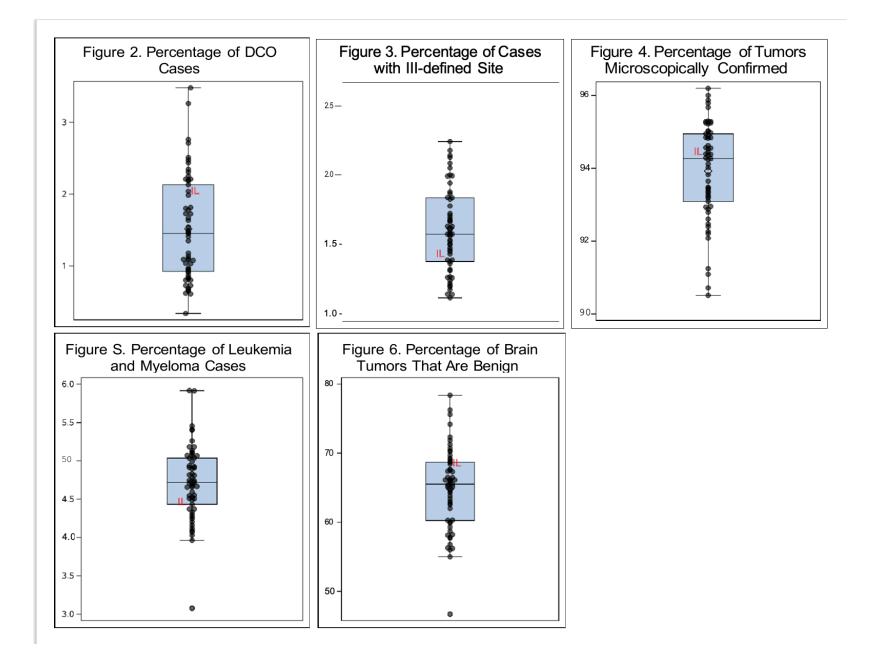
Table 1. Illinois All Sites Completeness Estimates

Submission Year = 2019; Diagnosis Year = 2017

		Internal				External	
Observed	Predicted (Delay Adjusted)	Completeness (95%Cl)	P(Completeness>98)	Observed	Predicted	Completeness (95%Cl)	P(Completeness>92)
69222	22 68393 101.2 (97.9, 104.5)		0.97	69222	66994	103.3 (102.4, 104.3)	>0.99


Table 2. Illinois Completeness Estimates by SiteSubmission Year = 2019; Diagnosis Year = 2017

		Internal			External	
Site	Observed	Predicted (Delay Adjusted)	Completeness	Observed	Predicted	Completeness
All Sites	69222	68393	101.2	69222	66994	103.3
Brain and ONS	869	894	97.2	869	876	99.2
Breast (Female)	10332	10558	97.9	10332	9909	104.3
Cervix	514	507	101.3	514	500	102.7
Colon and Rectum	6073	6387	95.1	6073	5706	106.4
Corpus and Uterus NO	2517	2563	98.2	2517	2289	110.0
Esophagus	693	738	93.9	693	702	98.7
Kidney and RP	2646	2722	97.2	2646	2565	103.2
Leukemia	1933	1757	110.0	1933	1950	99.1
Liver and IBD	1207	1309	92.2	1207	1234	97.8
Lung and Bronchus	9438	9469	99.7	9438	8938	105.6
Lymphoma	3199	3175	100.7	3199	3072	104.1
Melanoma of the Skin	3288	3048	107.9	3288	3295	99.8
Myeloma	1003	951	105.4	1003	1048	95.7
Oral Cavity and Phar	1913	1895	100.9	1913	1816	105.4
Ovary	812	840	96.7	812	815	99.7
Pancreas	2184	2040	107.1	2184	2014	108.4
Prostate	8313	7148	116.3	8313	8081	102.9
Stomach	1070	1023	104.6	1070	974	109.8
Urinary Bladder	3064	3057	100.2	3064	2901	105.6
Other Sites	8154	8718	93.5	8154	8310	98.1


Table 3. Illinois Completeness Estimates by Site and Diagnosis Year

						Inte	rnal											Exte	rnal					
						Diagno	sis Year											Diagno	sis Year					
Site	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
All Sites	103	103	103	98	96	100	97	101	103	102	101	101	102	101	103	103	102	102	101	101	102	102	103	103
Brain and ONS	106	94	102	93	101	101	91	94	100	101	98	97	103	96	102	94	102	104	94	94	99	101	100	99
Breast (Female)	108	105	106	105	98	101	97	101	102	101	100	98	104	101	101	101	104	103	100	103	105	104	106	104
Cervix	102	99	115	96	96	104	91	99	113	97	111	101	108	104	115	103	99	106	95	101	108	93	106	103
Colon and Rectum	100	97	97	93	100	103	97	100	101	103	107	95	109	107	106	104	108	112	108	107	107	105	111	106
Corpus and Uterus NO		98	100	107	102	100	98	101	99	99	101	98	112	106	107	109	109	108	104	109	105	105	106	110
Esophagus		103	102	101	91	104	103	94	100	102	93	94	107	105	103	104	100	110	112	101	104	108	99	99
Kidney and RP	101	95	98	98	90	105	101	100	104	102	100	97	109	106	105	108	103	108	106	105	108	106	104	103
Leukemia	102	93	106	101	105	107	110	97	95	98	100	110	103	95	102	94	96	97	95	92	91	93	93	99
Liver and IBD		102	96	108	108	95	100	95	101	101	99	92	95	101	92	100	100	93	98	90	93	95	95	98
Lung and Bronchus	102	101	100	102	97	98	98	96	105	100	99	100	105	103	103	106	104	105	103	101	105	105	103	106
Lymphoma	95	99	103	99	102	97	95	99	104	103	99	101	99	100	102	99	103	100	98	98	102	101	102	104
Melanoma of the Skin	99	100	102	97	92	97	97	91	104	109	109	108	86	87	91	89	89	91	92	84	87	91	98	100
Myeloma	102	94	111	109	101	107	106	100	104	105	107	105	102	95	102	100	94	96	96	90	91	94	96	96
Oral Cavity and Phar	99	106	105	101	98	105	100	99	98	101	99	101	100	103	102	104	103	106	103	102	100	103	100	105
Ovary		95	94	98	103	97	94	100	100	106	95	97	106	103	99	101	105	101	98	98	99	103	101	100
Pancreas	94	99	102	105	98	98	99	102	102	104	100	107	102	105	104	109	104	101	103	104	102	105	101	108
Prostate		115	106	90	89	95	85	95	100	109	108	116	98	100	106	107	99	100	103	102	105	104	102	103
Stomach	98	103	102	104	99	108	102	109	104	105	102	105	104	107	107	105	101	106	101	109	106	109	108	110
Urinary Bladder	91	98	104	103	96	98	97	106	101	105	100	100	103	104	107	108	104	104	101	109	104	108	106	106
Other Sites	102	104	100	98	96	97	100	99	99	98	98	94	98	99	98	97	97	95	97	96	98	99	99	98

Table 3. Illinois Completeness Estimates by Site and Diagnosis Year

Table 3. Illinois Completeness Estimates by Site and Diagnosis Year Output Output

Table 1. Pennsylvania All Sites Completeness Estimates

Submission Year = 2019; Diagnosis Year = 2017

		Internal				External	
Observed	Predicted (Delay Adjusted)	Completeness (95%Cl)	P(Completeness>98)	Observed	Predicted	Completeness (95%Cl)	P(Completeness>92)
79341	79522	99.8 (96.9, 102.6)	0.89	79340	76769	103.3 (102.4, 104.3)	>0.99

Table 2. Pennsylvania Completeness Estimates by Site

Submission Year = 2019; Diagnosis Year = 2017

		Internal			External	
Site	Observed	Predicted (Delay Adjusted)	Completeness	Observed	Predicted	Completeness
All Sites	79341	79522	99.8	79340	76769	103.3
Brain and ONS	1089	1070	101.7	1089	1000	108.9
Breast (Female)	11213	11372	98.6	11213	11153	100.5
Cervix	503	507	99.3	503	486	103.6
Colon and Rectum	6579	6716	98.0	6579	6383	103.1
Corpus and Uterus NO	2933	3045	96.3	2933	2706	108.4
Esophagus	906	891	101.6	906	837	108.3
Kidney and RP	2971	2900	102.4	2971	2844	104.5
Leukemia	2404	2399	100.2	2404	2247	107.0
Liver and IBD	1552	1627	95.4	1551	1408	110.1
Lung and Bronchus	10930	10712	102.0	10930	10325	105.9
Lymphoma	3701	3908	94.7	3701	3541	104.5
Melanoma of the Skin	3475	3708	93.7	3475	4219	82.4
Myeloma	1193	1161	102.8	1193	1140	104.6
Oral Cavity and Phar	2086	2092	99.7	2086	2059	101.3
Ovary	986	990	99.6	986	912	108.1
Pancreas	2587	2501	103.4	2587	2388	108.3
Prostate	8747	8212	106.5	8747	9121	95.9
Stomach	976	1021	95.6	976	978	99.8
Urinary Bladder	3990	4053	98.5	3990	3575	111.6
Other Sites	10520	10511	100.1	10520	9449	111.3

Table 3. Pennsylvania Completeness Estimates by Site and Diagnosis Year

						Inte	rnal											Exte	ernal					
						Diagnos	sis Year											Diagno	sis Year					
Site	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
All Sites	104	103	98	98	99	101	96	100	99	102	100	100	103	103	103	103	105	106	103	105	103	104	104	103
Brain and ONS	100	102	98	93	98	96	98	100	95	95	100	102	105	107	106	99	105	105	106	107	104	102	106	109
Breast (Female)	104	102	104	102	98	101	100	102	101	99	100	99	100	97	100	100	100	100	101	102	102	100	101	101
Cervix		107	100	100	88	106	98	96	90	103	106	99	99	110	104	105	101	111	107	105	93	102	105	104
Colon and Rectum	99	97	96	98	94	100	99	102	99	104	100	98	107	106	103	105	102	107	104	105	102	104	103	103
Corpus and Uterus NO	101	107		97	102	102	97	101	98	99	101	96	113	114	121	112	115	119	114	115	108	110	114	108
Esophagus	97	98	104	97	93	99	98	102	102	105	109	102	101	101	106	98	101	102	102	104	102	104	110	108
Kidney and RP	104	97	101	94	93	101	104	107	103	104	103	102	108	105	108	101	103	102	101	105	103	104	103	104
Leukemia	103	98	98	105	112	101	89	97	108	106	101	100	101	98	96	101	105	105	99	98	102	102	103	107
Liver and IBD	101	104	102	104	98	98	97	99	98	101	93	95	108	106	107	108	108	112	104	110	107	113	108	110
Lung and Bronchus	100	101	99	100	97	99	97	100	100	101	101	102	101	102	100	102	102	103	100	103	103	103	104	106
Lymphoma	101	97	103	105	94	104	101	98	103	98	98	95	105	101	105	110	105	109	109	106	110	106	107	105
Melanoma of the Skin	98	93	101	112	109	96	93	112	104	97	85	94	84	78	81	88	93	92	93	102	103	100	90	82
Myeloma		109	104	111	110	94	95	103	108	102	97	103	96	104	97	104	104	101	97	100	105	103	99	105
Oral Cavity and Phar	105	104	104	99	101	104	99	99	98	96	106	100	96	96	95	94	97	101	102	99	97	95	99	101
Ovary	95	109	102	100	100	97	96	96	101	97	102	100	98	106	104	103	108	106	102	101	103	100	111	108
Pancreas			100	96	105	104	94	99	104	106	101	103	102	102	103	101	107	107	102	105	106	110	106	108
Prostate	117	115	85	96	99	103	82	86	82	117	105	107	105	103	99	98	103	105	99	100	95	102	101	96
Stomach	103	100		97	111	99	93	94	105	96	102	96	113	109	120	110	115	110	102	102	110	103	107	100
Urinary Bladder	101	102	101	99	101	103	99	103	97	98	96	98	111	111	112	110	114	116	112	117	111	112	111	112
Other Sites	100		103	101	101	97	97	96	93	99	101	100	110	113	112	112	114	112	112	110	108	108	109	111