The mortality-to-incidence ratio is not a valid proxy for cancer survival

Cancer Survival Group

NAACCR – IACR Combined Annual Conference
12 June 2019, Vancouver BC, Canada
The mortality-to-incidence ratio (M/I ratio) – 20th century

- “Deaths in period”
- \textit{If} no. of deaths \textit{exceeds} no. of cases, suggests incomplete registration
- Deaths from an independent data source
- \textit{Indicator of the completeness of cancer registration (M/I \%)}

• M/I ratio “bears strong inverse association to survival”, and …

• “… taken in conjunction with known average survival rates, should give some indication as to completeness.”

• M/I ratio was not being proposed as a surrogate for cancer survival
The mortality-to-incidence ratio (M/I ratio) – 20th century

“Cancer Registration: Principles and Methods” (1991)

- *If* the registry cannot estimate survival, the M/I ratio [*case-fatality ratio*] …
- “… can be used as an *indicator* of survival.” [*duration not specified*]

But

- Registered patients and persons certified as having died of cancer *not* the same
- M/I ratio only “an indirect description of the general survival experience.”
M/I ratio is the “case-fatality ratio”, or the “case-fatality rate”

(1-M/I ratio) is the survival [rate] [duration not specified!]

Global Burden of Cancer (Economist Intelligence Unit, 2009)

M/I ratio approximates the percentage of people who die of cancer
M/I ratio approximates the cancer-specific mortality rate

Disease Control Priorities: Cancer (World Bank, 2015)

M/I ratio estimates cancer prevalence, as a surrogate for access to care

Global Burden of Disease (IHME, 2018)
Mistaken in principle

• Mortality and incidence rates do not refer to the same persons

• Inaccurate cancer mortality rates
 – Incomplete death registration
 – Inaccuracy in certification of cause(s) of death
 – Inaccuracy in selecting the underlying cause of death

• Death certificate less precise than registry diagnosis

• No mathematical relationship between (1-M/I ratio) and survival

(1-M/I ratio) is not a valid proxy for survival
Mortality rates – questionable validity

56 million deaths every year: two-thirds are not registered

Of 115 WHO Member States reporting mortality data in 2003:

• Only 64 had high-quality vital registration with cause of death
• Excl. N America, Europe – one-third with usable mortality statistics
• Africa, Southeast Asia – half do not record cause of death
(1-M/I ratio) is **not** a valid proxy for survival

2 – Misleading in practice

- M/I ratio calculated with numbers *or* rates
- Rates either crude *or* age-standardised (standard not stated)
- Survival declines with time since diagnosis …
- No intrinsic reason why (1-M/I ratio) should estimate **five**-year survival
(1-M/I ratio) is not a valid proxy for survival – or is it?

 England, 19 cancers in men, 20 in women
 Diagnosed 1981-2009, followed up to 2013

 • Age-standardised mortality rates/10^5 p-yr (2013 European standard)
 • Age-standardised incidence rates/10^5 p-yr (2013 European standard)
 • (1-M/I ratio)
 • Age-standardised net survival up to 10 years (ICSS standard)
 • Flexible excess hazard regression model, age and year of diagnosis
(1-M/I ratio) is not a valid proxy for survival – or is it?

4 - Absolute difference from 5-year net survival, for 2009:

- Less than 5% for 12 cancer-sex combinations
- 5% to 14.9% for 15 cancer-sex combinations
- 15% or more for 12 cancer-sex combinations

Dramatic changes in this difference between 1981 and 2009 – most cancers

Difference from 1-year or 10-year survival generally even wider
Less than 5% difference in 2009 – breast cancer

Age-standardised net survival or (1-M/I)

1-(M/I) ratio

Mortality rate

Incidence rate

Calendar year of diagnosis (incidence, survival) or of death (mortality)
Less than 5% difference in 2009 – breast cancer

- 1-year net survival
- 5-year net survival
- 10-year net survival
- Incidence rate
- 1-(M/I) ratio
- Mortality rate

Age-standardised net survival or (1-M/I)

Calendar year of diagnosis (incidence, survival) or of death (mortality)
More than 15% difference in 2009 – stomach cancer (men)
More than 15% difference in 2009 – stomach cancer (men)
More than 15% difference in 2009 – stomach cancer (men)
1-M/I ratio is *invalid* as a survival metric …

… that would be robust for

- all cancers
- all countries
- all calendar periods
- any particular time since diagnosis
(1-M/I ratio) is indefensible as a proxy for survival

- No theoretical basis
- Not an observation of survival in a cohort of cancer patients
- Inconsistent between cancers (sexes, countries…)
- Relationship not stable over time, for any cancer
- Public health interest wider than “5-year survival league tables”
(1-M/I ratio) is indefensible as a proxy for survival

The (1-M/I ratio) does not:

• Enable quality control of individual records
• Reflect survival by time since diagnosis (survival curve)
• Reflect survival by age, stage, SES, race/ethnicity, region, …
• Take account of background mortality
• Enable evaluation of health service effectiveness
• Enable derivation of “cure”, avoidable deaths, …
• Enable robust comparison between countries
The Mortality-to-Incidence Ratio Is Not a Valid Proxy for Cancer Survival

Libby Ellis, PhD; Aurélien Belot, PhD; Bernard Rachet, PhD, MD; and Michel P. Coleman, BM, BCh

PURPOSE The ratio of cancer mortality and cancer incidence rates in a population has conventionally been used as an indicator of the completeness of cancer registration. More recently, the complement of the mortality-to-incidence ratio (1-M/I) has increasingly been presented as a surrogate for cancer survival. We discuss why this is mistaken in principle and misleading in practice.

METHODS We provide an empirical assessment of the extent to which trends in the 1-M/I ratio reflect trends in cancer survival. We used national cancer incidence, mortality and survival data in England to compare trends in both the 1-M/I ratio and net survival at 1, 5, and 10 years for 19 cancers in men and 20 cancers in women over the 29-year period from 1981 to 2009.
<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Men Absolute Difference</th>
<th>Men 1-M/1 Ratio</th>
<th>Men 5-year NS</th>
<th>Men Difference</th>
<th>Women Absolute Difference</th>
<th>Women 1-M/1 Ratio</th>
<th>Women 5-year NS</th>
<th>Women Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 5% difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>8.4</td>
<td>13.3</td>
<td></td>
<td>-4.9</td>
<td>13.4</td>
<td>15.6</td>
<td></td>
<td>-2.2</td>
</tr>
<tr>
<td>Pancreas</td>
<td>7.4</td>
<td>4.4</td>
<td></td>
<td>3.1</td>
<td>6.7</td>
<td>4.7</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Melanoma</td>
<td>84.8</td>
<td>77.7</td>
<td></td>
<td>7.0</td>
<td>89.5</td>
<td>85.6</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>Breast (women)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.2</td>
<td>78.1</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Ovary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.1</td>
<td>43.9</td>
<td></td>
<td>-0.8</td>
</tr>
<tr>
<td>Testis</td>
<td>96.5</td>
<td>95.3</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>77.6</td>
<td>74.4</td>
<td></td>
<td>3.2</td>
<td>88.9</td>
<td>81.8</td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>Hodgkin disease</td>
<td>79.8</td>
<td>79.7</td>
<td></td>
<td>0.1</td>
<td>84.4</td>
<td>82.9</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>61.3</td>
<td>55.4</td>
<td></td>
<td>5.9</td>
<td>65.2</td>
<td>61.0</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>5%-14.9% difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larynx (men)</td>
<td>68.4</td>
<td>58.2</td>
<td></td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>15.5</td>
<td>9.5</td>
<td></td>
<td>6.1</td>
<td>21.0</td>
<td>12.3</td>
<td></td>
<td>8.7</td>
</tr>
<tr>
<td>Uterus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78.8</td>
<td>71.4</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>Prostate</td>
<td>73.2</td>
<td>66.8</td>
<td></td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>62.9</td>
<td>48.7</td>
<td></td>
<td>14.3</td>
<td>61.9</td>
<td>51.7</td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>49.7</td>
<td>37.7</td>
<td></td>
<td>12.1</td>
<td>46.0</td>
<td>37.9</td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td>Leukemia</td>
<td>47.5</td>
<td>40.1</td>
<td></td>
<td>7.4</td>
<td>48.0</td>
<td>40.7</td>
<td></td>
<td>7.3</td>
</tr>
<tr>
<td>Difference of 15% or more</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>37.9</td>
<td>17.2</td>
<td></td>
<td>20.8</td>
<td>37.7</td>
<td>18.6</td>
<td></td>
<td>19.1</td>
</tr>
<tr>
<td>Colon</td>
<td>64.9</td>
<td>45.6</td>
<td></td>
<td>19.3</td>
<td>66.1</td>
<td>47.6</td>
<td></td>
<td>18.5</td>
</tr>
<tr>
<td>Rectum</td>
<td>63.7</td>
<td>48.5</td>
<td></td>
<td>15.2</td>
<td>63.4</td>
<td>51.4</td>
<td></td>
<td>12.0</td>
</tr>
<tr>
<td>Liver</td>
<td>38.7</td>
<td>11.2</td>
<td></td>
<td>27.5</td>
<td>41.7</td>
<td>10.2</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td>Cervix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.4</td>
<td>64.9</td>
<td></td>
<td>32.6</td>
</tr>
<tr>
<td>Bladder</td>
<td>75.7</td>
<td>48.4</td>
<td></td>
<td>27.3</td>
<td>70.3</td>
<td>43.1</td>
<td></td>
<td>27.3</td>
</tr>
<tr>
<td>Brain</td>
<td>35.3</td>
<td>18.9</td>
<td></td>
<td>16.5</td>
<td>39.2</td>
<td>21.3</td>
<td></td>
<td>17.9</td>
</tr>
</tbody>
</table>