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Introduction



1. Given a breast cancer (C50) pathology report identify: ER, PR,
HER2

e Semantic (context) word embeddings from electronic pathology
reports
e Employ a Multi-Task Deep Learning algorithm

2. Uncertainty Quantification (UQ) of deep models



Pathology Reports

e Patient data:
e electronic pathology reports (XML format)

e For example The Estrogen Receptor (VECTOR-CLONE 6F11) is
negative in 100% of the tumor cells showing 0 staining ...

e Extract tumor genomic marker information from text



Pathology Reports

e Patient data:
e electronic pathology reports (XML format)

e For example The Estrogen Receptor (VECTOR-CLONE 6F11) is
negative in 100% of the tumor cells showing 0 staining ...

e Extract tumor genomic marker information from text

Difficult, because —

e Text is semi-structured
e Un-standardized terms, abbreviations and acronyms
For example, ER (or) estrogen receptor
e Information may be in different sections of the report, etc.



Tumor Genomic Markers

e Five different classes

Tumor Genomic Markers Description
Table 1: Count of breast ‘ ‘ ‘ ‘ ‘

cancer reports per registry = 0o ER
| 04 I — —rlo PR
Registry | C50 count - B l0HER?
HI 120 '4%
KY 118 2, .
NM 146 o
CT 50 D
Seattle 124 . _’_1_‘ _|7 I
Total 558
e e (o ed on®
oo ne? @o\“ v\o‘@aﬂ oo
Classes

e PR has no Neutral classes



Classification via Simple NLP Techniques

e Term Frequency Inverse Document Frequency (TF-IDF)

Table 2: ML classifiers with all 962 features extracted using TF-IDF.

Ada Gaussian Linear Naive Nearest RBF
Input DT MLP DA RF
e ‘ Boost ‘ ‘ Process ‘ SVM Bayes ‘ Neigh Q SVM
ER 50.00 57.14 66.67 61.90 61.90 54.76 62.05 42.86 42.86 52.38
HER2 47.62 47.62 54.76 59.52 47.62 45.24 59.52 54.76 54.76 50.00
PR 38.10 47.62 59.52 57.14 54.76 45.24 61.90 42.86 42.86 54.76




Classification via Simple NLP Techniques

e Term Frequency Inverse Document Frequency (TF-IDF)

Table 2: ML classifiers with all 962 features extracted using TF-IDF.

Ada Gaussian Linear Naive Nearest RBF
Input ‘ Boost ‘ DT ‘ Process ‘ SVM ‘ Bayes ‘ Neigh MLP ‘ QDA ‘ SVM ‘ RF
ER 50.00 57.14 66.67 61.90 61.90 54.76 62.05 42.86 42.86 52.38
HER2 47.62 47.62 54.76 59.52 47.62 45.24 59.52 54.76 54.76 50.00
PR 38.10 47.62 59.52 57.14 54.76 45.24 61.90 42.86 42.86 54.76
e Multi-layered
Perceptrons
performed better
e Domain expertise 5 ”
— reduced NN
features (25) S — R ]
e Accuracy 70%. Figure 1: Feature Figure 2: Reduced
importance features



Semantic Word Embeddings

e Feed words to DL algorithm as numeric vectors

e Keep the context (meaning) of a word by estimating the
probabilities of other words that are close

e PLOS One Oncology papers to prepare word embeddings

Hidden Layer Word Vector

Weight Matrix Lookup Table!

Output Layer

Softmax Classifier
300 features

300 neurons

Input Vector

B (z)
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Figure 3: NN for Figure 4: Word vectors —

Word2Vec embeddings Semantic embeddings



Semantic Word Embeddings

e Feed words to DL algorithm as numeric vectors

e Keep the context (meaning) of a word by estimating the
probabilities of other words that are close

e PLOS One Oncology papers to prepare word embeddings

Hidden Layer Word Vector
v )

output Layer Weight Matrix Lookup Table!
Softmax Classifier . . 1 1
pienton 300 neurons 300 featues w2v.most_similar('estrogen’)
Input Vector Linear Neurons , @ , ,
,, () (u’hormone’, 0.681),
[o] _ : @ ] 1]
s e . ] (u'estrogen’, 0.654),
o / (7% Y ) e g H ’ ’
- g ‘@ : : (u'mone’, 0.647),
[o] < S §~ 1] 1
il (2 \ S s (uhor’, 0.621),
°°°°°°°° . @ (u'pgr’, 0.592)

Figure 5: Top 5 most
Figure 3: NN for Figure 4: Word vectors —  similar words

Word2Vec embeddings Semantic embeddings



Multi-Task Learning (MTL)




Multi-Task Convolution Neural Network (MT-CNN)

e Three different tasks (ER, PR, HER2)

Individual
Task —
Layers

Shared
Layers

m—

Outputs Outputs

Task ER Task PR Task HER2
FC layer FC layer FC layer

Task ER Task PR Task HER2

MaxPool MaxPool MaxPool

Task ER Task PR Task HER2
CNN CNN CNN

Shared MaxPooling (MaxPool1D)

Shared CNN (Conv1D)

Embeddings

Input Layer

Fully
Connected
Layers

S—




Convolution Neural Network (CNN)

e An example CNN for Natural Language Processing

wait
for
the
BT VP o e e ! i ) e I I ey 0, 0 M o e S 0
and %
do [ | [T ]l 1l H~~ TtHP» ™A
nt | T FTT N e
rent e
it Hl
I I | J L |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

e Input text document as a matrix prepared from embeddings

e Convolutions —— > Max Pooling —— > Fully Connected (FC) layer
—— > SoftMax



Results




MT-CNN Experiments

e Train, validation and test splits of the data: 0.6, 0.2 and 0.2
e Precision (P(C;)), Recall (R(C;j)) and F-score (F(C;))

TP,
TPj—|—FPj

TP,
R(CI) N TPJ—I—FNJ
_2 X P(C,') X R(C,')
FlG)= P(G)+ R(C)

P(Ci) =

micro __

micro __

Fmicro _

C

TXEL (TP FR)
C

_ Zj:l TP J
L1 (TP + FN;)

2 % Pmicro < Rmicro
Pmicro + Rmicro

TPy + TP, + TPs

macro =

micro =

(TPy+ FPy) + (TP, + FPy)+ (TPs + FP3)

macro 1 <
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j=1

C
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ICl !

Jj=1

1 C

[Fmacro :E % Z F(CJ)
Jj=1
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MT-CNN Experiments

e Train, validation and test splits of the data: 0.6, 0.2 and 0.2
e Precision (P(C;)), Recall (R(C;j)) and F-score (F(C;))

c _ 1 &

P(C-) B TPj pmicro _ Zj:l TPJ pmacre :? X Z P(CJ)
) =TP. 1 FP; ¥ (TP, + FP;) €l =
. c <

R(C,) :l micro __ Zj:l TPj Rmacre :i X Z R(CJ)
TP; + FN; ¥C (TP + FN;) A=
2><P(C,')><R(C,') 1 1 C

F(C,') — . 2 x pPMicro . gmicro macro _i .
P(Ci)+R(Ci) Fm™ee = Pmicro_l_Rmicro F _|C‘ XJ;F(CJ)

TPy + TP, + TP;
(TPy+ FPy) + (TP, + FPy)+ (TPs + FP3)

micro =

macro =

% < [P(C)+ P(C2) + P(Cy)

e Confidence intervals (Cl) are the (lower, upper) bounds of
performance metrics

e Cl are measured with re-sampling the train and test sets at o« = 0.95



MT-CNN Performance

Table 3: Performance of MTCNN

Avg. Value
Metric (Confidence
Interval [CI])

prmacro 0.679
(0.507, 0.851)

Rmacro 0649
(0.428, 0.870)

Fmicro 0.719
(0.589, 0.859)

Fmacro 0.646

(0.436, 0.857)

True label

Confusion Matrix (ER)

Negative 1 6 3 0
30
Positive 4 1 1
25
20
Not Reported - 0 0 L 15
10
Unknown - 0 i 0 2 L5
T —-0
3 @ > Q&
@C\ 9.,\‘\4 & \‘:\\QQ\
O’
3 < S N
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Predicted label

Figure 6: Confusion matrix of predictions
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MT-CNN Performance

Confusion Matrix (ER)

Negative 1 6 3 0
Table 3: Performance of MTCNN
Avg. Value . ) .
Metric | (Confidence e 2
Interval [CI]) 3
g - 20
=
Pmacro 0679 Not Reported 0 0 L 15
(0.507, 0.851)
Rmacro 0.649 o
(0.428, 0.870) . 0 1 0 5 g
Fmicro 0.719
(0.589, 0.859) : : : : L1y
& ”;\4@ Q> 00
[Fmacro 0.646 & & &Qﬁé \58*6
(0.436, 0.857) °

Predicted label

Figure 6: Confusion matrix of predictions

e \What contributes to the prediction?
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Model Visualizations
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Figure 7: Visualize the importance of different tokens
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Model Visualizations
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Figure 7: Visualize the importance of different tokens
11



Uncertainty Quantification




Uncertainty Quantification (UQ) of MT-CNN

Why UQ?
e Deep nets can confidently predict the wrong result

e Registries expect prediction confidence on a per report basis

12



Uncertainty Quantification (UQ) of MT-CNN

Why UQ?
e Deep nets can confidently predict the wrong result

e Registries expect prediction confidence on a per report basis

e Each task of MT-CNN outputs a distribution, P, over all classes

Zf:o Pi~1
k* = arg maxy P

e These are not the actual probabilities, rather need to be calibrated
against real-time performance to get true probabilities
P = [0.01, 0.88, 0.04, 0.02, 0.05], k* = index(max(P)) = 2

12



Mixture Models

e Presence of sub-populations with-in

A
a sample population
e Use both SoftMax scores and
Entropy to compute the confidence
e Formally, compute
o P(ktrue = K|k* = K, sofmax(P))
° P(km,e — K|k* =K, H(P)) >
Mixture Model Formulation
Given population components 71, 7, ..., Ty and corresponding
densities fr, ..., fy, for a given population sample X, we find

Confidence, ¥,

C = P(C(X)=m|X) = Zin:cg(())(';)/gfg(())( ):Zm;;)

C(X) denotes the component from which X was drawn.

13



UQ results

e Gaussian and Beta Mixture models on test data predictions

SoftMax ER (Gaussian) SoftMax ER (Beta Mixture)
06 098 06 0.98
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Figure 9: Beta Mixture Model UQ at
Figure 8: Gaussian UQ at 4 =0.972 ¢ — 0.98

e Retain Percent is the % of reports with k* > €

e Accuracy is the % of reports, where predicted = true and k* > ¥
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Fragility vs. Correctness

e Fragility is the entropy of predictions over N number of experiments

e Correctness is the % of accurate predictions among N experiments.

pearsonr =-0.28; p = 0.0035
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e 0.25 (left) and 0.5 (right) dropout

pearsonr = -0.58; p = 4.8e-11

rates
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Fragility vs. Correctness

e Fragility is the entropy of predictions over N number of experiments
e Correctness is the % of accurate predictions among N experiments.

pearsonr = -0.28; p = 0.0035 pearsonr =-0.58; p = 4.8e-11

02 0.00 025 050 075 00 125 -0.25 0.00 025 050 075 1.00 1.25 1.50
Fragility

e 0.25 (left) and 0.5 (right) dropout rates

e More number of correct examples with lower
entropy

e Perturbing the network has an impact on the

performance.

(a) Standard Neural Net (b) After applying dropout.
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Documenting the UQ results

{
"task_name": "ER", "report_index": 46,
"Annotations": [ {
"category": "ER",
"classificationArray": [ {
"classification": "Positive",
"evidenceArray": [],
"probability": {
"est": 99.72696565410538,
"raw_score": 0.9997360000000001,
"calibrated": "yes",
"est_type": "beta_mixtures"
}s
"certainty": "yes" } 1 } ]
}

16



Conclusion




Conclusion & Future Directions

e The MT-CNN approach is promising even after a rigorous UQ
analysis.

e Confidence bounds are not enough, UQ is needed, especially on a
per report basis confidence

17



Conclusion & Future Directions

e The MT-CNN approach is promising even after a rigorous UQ
analysis.

e Confidence bounds are not enough, UQ is needed, especially on a
per report basis confidence

Problem

However, there is always a need for labeled data in supervised
classification.

Future Directions

We opt to employ a graph-based deep learning semi-supervised approach
in order to predict the genetic markers.
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Questions?




