

Gopinath Chennupati¹, Kumkum Ganguly¹, Benjamin McMahon¹, Sunil Thulasidasan¹, Jessica Boten², Valentina Petkov², Lynne Penberthy², Xiao-Cheng Wu³, Paul Fearn² and Tanmoy Bhattacharya¹

¹Los Alamos National Laboratory ²National Cancer Institute ³Louisiana Tumor Registry

Table of contents

- 1. Introduction
- 2. Multi-Task Learning (MTL)
- 3. Results
- 4. Uncertainty Quantification
- 5. Conclusion

Introduction

Objectives

- 1. Given a breast cancer (**C50**) pathology report identify: ER, PR, HER2
 - Semantic (context) word embeddings from electronic pathology reports
 - Employ a Multi-Task Deep Learning algorithm
- 2. Uncertainty Quantification (UQ) of deep models

Pathology Reports

- Patient data:
 - electronic pathology reports (XML format)
- For example The Estrogen Receptor (VECTOR-CLONE 6F11) is negative in 100% of the tumor cells showing 0 staining ...
- Extract tumor genomic marker information from text

Pathology Reports

- Patient data:
 - electronic pathology reports (XML format)
- For example The Estrogen Receptor (VECTOR-CLONE 6F11) is negative in 100% of the tumor cells showing 0 staining ...
- Extract tumor genomic marker information from text
- Difficult, because -
 - Text is semi-structured
 - Un-standardized terms, abbreviations and acronyms For example, ER (or) estrogen receptor
 - Information may be in different sections of the report, etc.

Tumor Genomic Markers

• Five different classes

Table 1: Count of breast cancer reports per registry

Registry

HI	120
KY	118
NM	146
СТ	50
Seattle	124
Total	558

Classes

• PR has no Neutral classes

4

Classification via Simple NLP Techniques

• Term Frequency Inverse Document Frequency (TF-IDF)

Table 2: ML classifiers with all 962 features extracted using TF-IDF.

Input	Ada Boost	DT	Gaussian Process	Linear SVM	Naive Bayes	Nearest Neigh	MLP	QDA	RBF SVM	RF
ER	50.00	57.14	66.67	61.90	61.90	54.76	62.05	42.86	42.86	52.38
HER2	47.62	47.62	54.76	59.52	47.62	45.24	59.52	54.76	54.76	50.00
PR	38.10	47.62	59.52	57.14	54.76	45.24	61.90	42.86	42.86	54.76

Classification via Simple NLP Techniques

• Term Frequency Inverse Document Frequency (TF-IDF)

Table 2: ML classifiers with all 962 features extracted using TF-IDF.

Input	Ada Boost	DT	Gaussian Process	Linear SVM	Naive Bayes	Nearest Neigh	MLP	QDA	RBF SVM	RF
ER	50.00	57.14	66.67	61.90	61.90	54.76	62.05	42.86	42.86	52.38
HER2	47.62	47.62	54.76	59.52	47.62	45.24	59.52	54.76	54.76	50.00
PR	38.10	47.62	59.52	57.14	54.76	45.24	61.90	42.86	42.86	54.76

- Multi-layered
 Perceptrons
 performed better
- Domain expertise
 reduced
 features (25)
- Accuracy 70%.

Figure 1: Feature importance

Figure 2: Reduced features

5

Semantic Word Embeddings

- Feed words to DL algorithm as numeric vectors
- Keep the context (meaning) of a word by estimating the probabilities of other words that are close
- PLOS One Oncology papers to prepare word embeddings

Figure 3: NN for Word2Vec embeddings

Figure 4: Word vectors – Semantic embeddings

Semantic Word Embeddings

- Feed words to DL algorithm as numeric vectors
- Keep the context (meaning) of a word by estimating the probabilities of other words that are close
- PLOS One Oncology papers to prepare word embeddings

Figure 3: NN for Word2Vec embeddings

Figure 4: Word vectors – Semantic embeddings

Multi-Task Learning (MTL)

Multi-Task Convolution Neural Network (MT-CNN)

• Three different tasks (ER, PR, HER2)

Convolution Neural Network (CNN)

• An example CNN for Natural Language Processing

- Input text document as a matrix prepared from embeddings
- Convolutions -- > Max Pooling -- > Fully Connected (FC) layer -- > SoftMax

Results

MT-CNN Experiments

- Train, validation and test splits of the data: 0.6, 0.2 and 0.2
- Precision (P(C_j)), Recall (R(C_j)) and F-score (F(C_j))

$$P(C_{i}) = \frac{TP_{j}}{TP_{j} + FP_{j}} \qquad P^{micro} = \frac{\sum_{j=1}^{C} TP_{j}}{\sum_{j=1}^{C} (TP_{j} + FP_{j})} \qquad P^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} P(C_{j})$$

$$R(C_{i}) = \frac{TP_{j}}{TP_{j} + FN_{j}} \qquad R^{micro} = \frac{\sum_{j=1}^{C} TP_{j}}{\sum_{j=1}^{C} (TP_{j} + FN_{j})} \qquad R^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} R(C_{j})$$

$$F(C_{i}) = \frac{2 \times P(C_{i}) \times R(C_{i})}{P(C_{i}) + R(C_{i})} \qquad F^{micro} = \frac{2 \times P^{micro} \times R^{micro}}{P^{micro} + R^{micro}} \qquad F^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} F(C_{j})$$

$$micro = \frac{TP_1 + TP_2 + TP_3}{(TP_1 + FP_1) + (TP_2 + FP_2) + (TP_3 + FP_3)} \quad macro = -\frac{1}{3} \times \left[P(C_1) + P(C_2) + P(C_3) \right]$$

MT-CNN Experiments

- Train, validation and test splits of the data: 0.6, 0.2 and 0.2
- Precision $(P(C_j))$, Recall $(R(C_j))$ and F-score $(F(C_j))$

$$P(C_{i}) = \frac{TP_{j}}{TP_{j} + FP_{j}} \qquad P^{micro} = \frac{\sum_{j=1}^{C} TP_{j}}{\sum_{j=1}^{C} (TP_{j} + FP_{j})} \qquad P^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} P(C_{j})$$

$$R(C_{i}) = \frac{TP_{j}}{TP_{j} + FN_{j}} \qquad R^{micro} = \frac{\sum_{j=1}^{C} TP_{j}}{\sum_{j=1}^{C} (TP_{j} + FN_{j})} \qquad R^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} R(C_{j})$$

$$F(C_{i}) = \frac{2 \times P(C_{i}) \times R(C_{i})}{P(C_{i}) + R(C_{i})} \qquad F^{micro} = \frac{2 \times P^{micro} \times R^{micro}}{P^{micro} + R^{micro}} \qquad F^{macro} = \frac{1}{|\mathbf{C}|} \times \sum_{j=1}^{C} F(C_{j})$$

$$micro = \frac{TP_1 + TP_2 + TP_3}{(TP_1 + FP_1) + (TP_2 + FP_2) + (TP_3 + FP_3)} \quad macro = -\frac{1}{3} \times \left[P(C_1) + P(C_2) + P(C_3) \right]$$

- Confidence intervals (CI) are the **(lower, upper)** bounds of performance metrics
- CI are measured with re-sampling the train and test sets at lpha=0.95

MT-CNN Performance

Table 3: Performance of MTCNN

Metric	Avg. Value (Confidence Interval [CI])
P ^{macro}	0.679
	(0.507, 0.851)
R ^{macro}	0.649
	(0.428, 0.870)
<i>F^{micro}</i>	0.719
	(0.589, 0.859)
⊏ macro	0.646
1	(0.436, 0.857)

Figure 6: Confusion matrix of predictions

MT-CNN Performance

Figure 6: Confusion matrix of predictions

• What contributes to the prediction?

Model Visualizations

Figure 7: Visualize the importance of different tokens

Model Visualizations

Figure 7: Visualize the importance of different tokens

Uncertainty Quantification

Uncertainty Quantification (UQ) of MT-CNN

Why UQ?

- Deep nets can confidently predict the wrong result
- Registries expect prediction confidence on a per report basis

Uncertainty Quantification (UQ) of MT-CNN

Why UQ?

- Deep nets can confidently predict the wrong result
- Registries expect prediction confidence on a per report basis
- Each task of MT-CNN outputs a distribution, P, over all classes

These are not the actual probabilities, rather need to be calibrated against real-time performance to get true probabilities
 P = [0.01, 0.88, 0.04, 0.02, 0.05], k* = index(max(P)) = 2

12

Mixture Models

- Presence of sub-populations with-in a sample population
- Use both *SoftMax* scores and *Entropy* to compute the confidence
- Formally, compute
 - $P(k_{true} = K | k^* = K, sofmax(P))$
 - $P(k_{true} = K | k^* = K, H(P))$

Mixture Model Formulation

Given population components π_1 , π_2 , ..., π_k and corresponding densities f_{π_1} , ..., f_{π_k} for a given population sample X, we find Confidence, \mathscr{C} ,

$$\mathscr{C} = P(C(X) = \pi_k | X) = \frac{f_{\pi_k}(X)P(C(X) = \pi_k)}{\sum_j f_{\pi_j}(X)P(C(X) = \pi_j)}$$

C(X) denotes the component from which X was drawn.

UQ results

• Gaussian and Beta Mixture models on test data predictions

Figure 8: Gaussian UQ at $\mathscr{C} = 0.972$

Figure 9: Beta Mixture Model UQ at $\mathscr{C} = 0.98$

- Retain Percent is the % of reports with $k^* \geq \mathscr{C}$
- Accuracy is the % of reports, where **predicted** = true and $k^* \geq \mathscr{C}$

Fragility vs. Correctness

- Fragility is the entropy of predictions over N number of experiments
- Correctness is the % of accurate predictions among N experiments.

• 0.25 (left) and 0.5 (right) dropout rates

Fragility vs. Correctness

- Fragility is the entropy of predictions over N number of experiments
- Correctness is the % of accurate predictions among N experiments.

• 0.25 (left) and 0.5 (right) dropout rates

- More number of correct examples with lower entropy
- Perturbing the network has an impact on the performance.

Documenting the UQ results

```
{
    "task_name": "ER", "report_index": 46,
    "Annotations": [ {
        "category": "ER",
        "classificationArray": [ {
            "classification": "Positive",
            "evidenceArray": [],
            "probability": {
               "est": 99.72696565410538,
               "raw_score": 0.999736000000001,
               "calibrated": "yes",
               "est_type": "beta_mixtures"
        },
        "certainty": "yes" } ] } ]
}
```

Conclusion

Conclusion & Future Directions

- The MT-CNN approach is promising even after a rigorous UQ analysis.
- Confidence bounds are not enough, UQ is needed, especially on a per report basis confidence

Conclusion & Future Directions

- The MT-CNN approach is promising even after a rigorous UQ analysis.
- Confidence bounds are not enough, UQ is needed, especially on a per report basis confidence

Problem

However, there is always a need for labeled data in supervised classification.

Future Directions

We opt to employ a graph-based deep learning semi-supervised approach in order to predict the genetic markers.

Questions?