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Introduction



Objectives

1. Given a breast cancer (C50) pathology report identify: ER, PR,
HER2

• Semantic (context) word embeddings from electronic pathology

reports

• Employ a Multi-Task Deep Learning algorithm

2. Uncertainty Quantification (UQ) of deep models
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Pathology Reports

• Patient data:

• electronic pathology reports (XML format)

• For example The Estrogen Receptor (VECTOR-CLONE 6F11) is

negative in 100% of the tumor cells showing 0 staining ...

• Extract tumor genomic marker information from text

• Di�cult, because –

• Text is semi-structured

• Un-standardized terms, abbreviations and acronyms

For example, ER (or) estrogen receptor

• Information may be in di↵erent sections of the report, etc.
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Tumor Genomic Markers

• Five di↵erent classes

Table 1: Count of breast

cancer reports per registry

Registry C50 count

HI 120

KY 118

NM 146

CT 50

Seattle 124

Total 558
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• PR has no Neutral classes
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Classification via Simple NLP Techniques

• Term Frequency Inverse Document Frequency (TF-IDF)

Table 2: ML classifiers with all 962 features extracted using TF-IDF.

Input
Ada

DT
Gaussian Linear Naive Nearest

MLP QDA
RBF

RF
Boost Process SVM Bayes Neigh SVM

ER 50.00 57.14 66.67 61.90 61.90 54.76 62.05 42.86 42.86 52.38

HER2 47.62 47.62 54.76 59.52 47.62 45.24 59.52 54.76 54.76 50.00

PR 38.10 47.62 59.52 57.14 54.76 45.24 61.90 42.86 42.86 54.76

• Multi-layered

Perceptrons

performed better

• Domain expertise

– reduced

features (25)

• Accuracy 70%. Figure 1: Feature

importance

Figure 2: Reduced

features
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Semantic Word Embeddings

• Feed words to DL algorithm as numeric vectors

• Keep the context (meaning) of a word by estimating the

probabilities of other words that are close

• PLOS One Oncology papers to prepare word embeddings

Figure 3: NN for

Word2Vec embeddings

Figure 4: Word vectors –

Semantic embeddings

w2v.most similar(’estrogen’)

(u’hormone’, 0.681),

(u’estrogen’, 0.654),

(u’mone’, 0.647),

(u’hor’, 0.621),

(u’pgr’, 0.592)

Figure 5: Top 5 most

similar words
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Multi-Task Learning (MTL)



Multi-Task Convolution Neural Network (MT-CNN)

• Three di↵erent tasks (ER, PR, HER2)

Input Layer

Shared CNN (Conv1D)

Shared MaxPooling (MaxPool1D)

Task ER
CNN

Task PR
CNN

Task HER2
CNN

Task ER
MaxPool

Task PR
MaxPool

Task HER2
MaxPool

Task ER
FC layer

Task PR
FC layer

Task HER2
FC layer

ER
Outputs

PR
Outputs

HER2
Outputs

Individual 
Task 

Layers

Shared
Layers

Fully 
Connected

Layers

Embeddings
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Convolution Neural Network (CNN)

• An example CNN for Natural Language Processing

• Input text document as a matrix prepared from embeddings

• Convolutions �� > Max Pooling �� > Fully Connected (FC) layer

�� > SoftMax
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Results



MT-CNN Experiments

• Train, validation and test splits of the data: 0.6, 0.2 and 0.2

• Precision (P(Cj )), Recall (R(Cj )) and F-score (F(Cj ))

P(Ci ) =
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TPj +FPj

R(Ci ) =
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• Confidence intervals (CI) are the (lower, upper) bounds of

performance metrics

• CI are measured with re-sampling the train and test sets at a = 0.95
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MT-CNN Performance

Table 3: Performance of MTCNN

Metric

Avg. Value

(Confidence

Interval [CI])

Pmacro 0.679

(0.507, 0.851)

Rmacro 0.649

(0.428, 0.870)

Fmicro 0.719

(0.589, 0.859)

Fmacro 0.646

(0.436, 0.857)

Neg
at
ive

Po
sit

ive

Not
Re

po
rte

d

Un
kn

ow
n

Predicted label

Negative

Positive

Not Reported

Unknown

T
ru

e
la

be
l

1 6 3 0

1 42 7 1

0 10 35 0

0 1 0 2

Confusion Matrix (ER)

0

5

10

15

20

25

30

35

40

Figure 6: Confusion matrix of predictions

• What contributes to the prediction?
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Model Visualizations
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Figure 7: Visualize the importance of di↵erent tokens

• carcinoma, ductal,

biopsy, invasive,

immunohistochemical,

etc.

• How confident are we

with MT-CNN

performance?
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Uncertainty Quantification



Uncertainty Quantification (UQ) of MT-CNN

Why UQ?

• Deep nets can confidently predict the wrong result

• Registries expect prediction confidence on a per report basis

• Each task of MT-CNN outputs a distribution, P , over all classes

• These are not the actual probabilities, rather need to be calibrated

against real-time performance to get true probabilities

P = [0.01, 0.88, 0.04, 0.02, 0.05], k⇤
= index(max(P)) = 2
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Mixture Models

• Presence of sub-populations with-in

a sample population

• Use both SoftMax scores and

Entropy to compute the confidence

• Formally, compute

• P(ktrue = K |k⇤
= K ,sofmax(P))

• P(ktrue = K |k⇤
= K ,H(P))

Mixture Model Formulation

Given population components p1, p2, . . . , pk and corresponding

densities fp1
, . . . , fpk for a given population sample X , we find

Confidence, C ,

C = P(C (X ) = pk |X ) =
fpk (X )P(C (X ) = pk)

Âj fpj (X )P(C (X ) = pj )

C(X) denotes the component from which X was drawn.
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UQ results

• Gaussian and Beta Mixture models on test data predictions

Figure 8: Gaussian UQ at C = 0.972
Figure 9: Beta Mixture Model UQ at

C = 0.98

• Retain Percent is the % of reports with k⇤ � C

• Accuracy is the % of reports, where predicted = true and k⇤ � C
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Fragility vs. Correctness

• Fragility is the entropy of predictions over N number of experiments

• Correctness is the % of accurate predictions among N experiments.

• 0.25 (left) and 0.5 (right) dropout rates

• More number of correct examples with lower

entropy

• Perturbing the network has an impact on the

performance.
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Documenting the UQ results

{
"task_name": "ER", "report_index": 46,

"Annotations": [ {
"category": "ER",

"classificationArray": [ {
"classification": "Positive",

"evidenceArray": [],

"probability": {
"est": 99.72696565410538,

"raw_score": 0.9997360000000001,

"calibrated": "yes",

"est_type": "beta_mixtures"

},
"certainty": "yes" } ] } ]

}
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Conclusion



Conclusion & Future Directions

• The MT-CNN approach is promising even after a rigorous UQ

analysis.

• Confidence bounds are not enough, UQ is needed, especially on a

per report basis confidence

Problem

However, there is always a need for labeled data in supervised

classification.

Future Directions

We opt to employ a graph-based deep learning semi-supervised approach

in order to predict the genetic markers.
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Questions?
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