The following staff contributed to this project: Donna Hansen, Bob Fakes, Tim Davison, and Deepa Padmanaban.

BACKGROUND

The National Program of Cancer Registries (NPCR) and the Surveillance, Epidemiology, and End Results Program (SEER) implemented separate derived TNM fields as part of the 2016 Data Item Changes.

A total of 11 fields were implemented only at the central registry level. This central registry only implementation was a change in process compared to the Collaborative Staging (CS) algorithm. The CS Derived fields were implemented at both the facility and central registry levels. This meant that the Facilities were required to clear CS errors prior to completing or updating admission records. This allowed for consistent data quality between facilities and central registries. This consistency has been lost with the move away from CS collection.

OBJECTIVE

The California Cancer Registry (CCR) is concerned about inconsistent data quality between facilities and central registries due to the implementation change. Additionally, the effectiveness of API errors has been questioned since if they are not being relayed to those who code the abstracts initially. The purpose of this poster is to find a resolution that bridges this identified gap.

METHODOLOGY

While preparing data for submissions, CA saw a high number of API errors, 17,322 combined SEER and NPCR for our 2016 data, total of 51,724 cases. This greatly contrasted the 850 edit error messages that were present on this same data. We analyzed the API error messages with the highest impact and initiated discussions with the standard setters as we verified the validity of the errors and determined the correct resolutions.

CONCLUSION

After this review, we determined it was necessary for us to work to resolve as many API errors on our and for our submission files. The following steps worked to resolve the API errors automatically while maintaining the integrity of the data:

1. Revise Eureka programming to properly default NPCR warning messages
2. Implement TNM Clin T, Clin M (CoC) and TNM Path T, Path M (CoC) edits
3. Data flags to resolve coding errors at the Admission level based on the API errors
4. Improved consolidation logic implemented for the TNM fields and run on the database
5. SEER and NPCR API re-run

Through these efforts we were able to clear a total of 15,574 API Errors for both SEER and NPCR without losing the integrity of the data. However, a small portion of the burden shifted to edit errors, 5,994, due to our efforts to improve the consolidated TNM data. We had identified a bug in our internal TNM consolidation logic that caused specific unknown definitions to have a higher hierarchy than known definitions.

OVERALL RESULTS

It was determined that 3 of our top API errors require further action by either updating edits or the APIs so that they are in-sync. This will ensure that facilities are either receiving the same feedback as central registries via the API errors or central registries are not unnecessarily receiving coding feedback via edits. The coding errors will be resolved at the best level, which is our end for our submission files. The following steps worked to resolve the API errors automatically:

1. Revise Eureka programming to properly default NPCR warning messages
2. Implement TNM Clin T, Clin M (CoC) and TNM Path T, Path M (CoC) edits
3. Data flags to resolve coding errors at the Admission level based on the API errors
4. Improved consolidation logic implemented for the TNM fields and run on the database
5. SEER and NPCR API re-run

After these efforts we were able to clear a total of 15,574 API Errors for both SEER and NPCR without losing the integrity of the data. However, a small portion of the burden shifted to edit errors, 5,994, due to our efforts to improve the consolidated TNM data. We had identified a bug in our internal TNM consolidation logic that caused specific unknown definitions to have a higher hierarchy than known definitions.