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Abstract

One of the most useful tools produced by the
field of cryptology is the cryptographic hash,
or message digest. Digests are like checksums,
but provide such a good fingerprint of the data
that i1t is actually computationally infeasible
to change the data without also changing the
data’s digest. This special property provides
new guarantees of integrity that lead to some
surprising applications. Many digest algorithms
are simple to use, patent free, and have C imple-
mentations that are freely available on the In-
ternet by FTP. This paper provides an introduc-
tion to digest algorithms, and reviews their ap-
plication to disk monitoring, intruder and virus
detection, file transfer verification, notarization,
and authentication. It also gives enough prac-
tical details to enable the reader to deploy the
popular MD5 digest algorithm.

1 Introduction

In the last twenty years, the field of cryptol-
ogy has undergone a revolution, sparked by the
invention of public key cryptography[Diffie76].
This revolution has yielded a range of new tech-
niques that can be applied in various combina-
tions to solve almost any secrecy, integrity, or
authentication problem. Some of these tech-
niques are complex, requiring a high degree of
cryptographic sophistication to be applied se-
curely. Others are simple, general-purpose tools
that can be applied effectively by anyone who
takes an interest in them. One such tool is the
digest algorithm, which reads a block of data
of any size and generates a small (e.g. 16-byte)

fixed-width, non-invertible “digest”. This di-
gest has particular special properties that en-
able it to act as a form of identity of the original
block. The best way to gain an understanding
of digests is to approach them through their an-
cestors, the checksums.

2 Checksums

Checksum algorithms are a particular class of
hashing algorithm that were devised to solve the
problem of detecting errors in messages trans-
mitted through noisy communication lines. To
enable errors to be detected, the transmitter
calculates the checksum of the message and
transmits it after the message. To check the
message, the receiver calculates the checksum of
the received message and compares it with the
received checksum. For example, if the check-
sum algorithm simply summed the bytes in the
message mod 256, then the transfer might pro-
ceed as follows:

Msg 6 23 4
Msg,checksum : 6 23 4 33
Msg received : 6 27 4 33

In this example, the second byte of the message
has been corrupted from 23 to 27 by the com-
munications channel. However, the receiver can
detect that something is wrong by comparing
the transmitted checksum (33) with the calcu-
lated checksum of 37 (6 + 27 + 4).

If the checksum itself is corrupted, a correctly
transmitted message might be incorrectly iden-
tified as a corrupted one. However, such safe-
side failures don’t matter much. A dangerous-
side failure occurs when the message and/or



checksum is corrupted in a way that results
in a transmission that is internally consistent.
Unfortunately, this possibility is completely un-
avoidable, and the best that can be done is
to minimize its probability by strengthening
the checksum algorithm until the chance of a
dangerous-side failure is acceptably low.

One way to strengthen the checksum algorithm
is to change from an 8-bit register to a 16-
bit register (i.e. sum the bytes mod 65536
instead of mod 256) so as to apparently re-
duce the probability of failure from 1/256 to
1/65536. While essentially a good idea, widen-
ing the checksum alone is not sufficient to signif-
icantly increase the strength of the error detec-
tion, as the formula used may not be sufficiently
random. With a simple summing formula, each
incoming byte affects roughly one byte of the
summing register no matter how wide the sum-
ming register 1s. In the example above, the error
would still go undetected even if the summing
register was one Megabyte wide. This problem
can only be solved by replacing the simple sum-
ming formula with a more sophisticated calcu-
lation that enables each incoming byte to have
the potential to affect the entire checksum reg-
ister. Thus, there are actually two requirements
for a strong checksum algorithm:

Width: The algorithm should
have a register wide enough to pro-
vide a low a-priori probability of
failure (e.g. 32-bits gives a 1/232
chance of failure).

Randomness: The algorithm
should give each input byte the po-
tential to affect many bits of the
register.

In other words, there is a need for enough width
in the checksum to provide an acceptably low
chance of a-priori dangerous-side failure, and
enough randomness to ensure that every byte
of the message will have a significant effect on
the result. These goals are reflected in contem-
porary checksum algorithms such as CRC-32.
Unlike their predecessors, modern checksum al-
gorithms no longer simply sum the bytes; in
fact, they are more likely to divide them! De-
spite this, the term checksum is still used to
describe any algorithm that produces an error
correction value, and which does not have the

cryptographic strength of the digest algorithms
described in the next section. Some common
checksums are: CRC-32, CRC-16, Fletcher, and
IP.

3 Problems With Check-
sums

Checksum algorithms provide a good solution
to the problem of detecting errors in data intro-
duced by random phenomena such as noise on
communication lines or defects in a hard-disk
surface. However, they are totally inadequate
in the face of hostile humans.

Consider the example of a military commander
who despatches the message “LAND” by courier
to the other half of his army, to indicate that
an attack is to take place by land. Being fear-
ful that the courier could be intercepted and
the message substituted, the commander takes
the precaution of authenticating the message by
calculating its checksum (31) and transmitting
the checksum by smoke signal, a slow, but com-
pletely uncorruptable channel. In doing this,
the commander relies on the checksum algo-
rithm as an authenticator.

Msg in ASCII : L A N D
Msg in decimal : 76 65 T8 68
Msg,checksum : 76 65 78 68 31
Corrupted (Dec) : 83 101 97 25 31

Corrupted (ASCII) : S e a 77

Unfortunately, the enemy does intercept the
message, and decides to replace it with a differ-
ent one: “Sea”. Being aware of the checksum
smoke signal, and realizing that a naive substi-
tution would be detected, the enemy modifies
the message in such a way that it has the same
checksum. It does this by appending the control
character 25 to the end of the message to make
the bytes of the message sum to 31 (mod 256).
As a result, the other half of the commander’s
army receives the message, checks its checksum
against the smoke signal checksum, and accepts
the substituted message.

This example that,
checksums provide excellent protection against

demonstrates whereas



random errors, they provide very little pro-
tection against intelligent and malicious agents
who are not constrained to corrupt messages in
a random manner. To protect against intelli-
gent opponents, signature algorithms must be
strengthened to the point where, it is extremely
difficult to find or construct a message having a
particular stgnature.

3.1 Digest Algorithms

To provide greater security, checksum algo-
rithms can be strengthened either by increasing
their width or increasing their randomness. Di-
gest algorithms do both, providing extra width
and randomness, and raising the level of secu-
rity to a point of practical unforgeability. This
makes them slower than checksum algorithms
— the price of the extra security.

Whereas most checksum algorithms are invert-
ible and generate a 2-byte or 4-byte checksum,
most digest algorithms generate a 16-byte (128-
bit) digest, and are non-invertible. If the digest
algorithm 1s designed properly, it will possess
the following two properties:

e It is computationally infeasible to find any
message that corresponds to a given digest.

e It is computationally infeasible to find any
two messages that correspond to the same
digest.

Such algorithms are referred to as strong one-
way hash functions, which we may equate
with the term digest. Algorithms that possess
only the first of the two properties are referred
to as weak one-way hash functions and are
best ignored by the practitioner. Strong one-
way hash functions are sometimes also referred
to as collision-free hash functions. This is
somewhat of a misnomer, as any function that
maps a space containing an infinite number of
values (e.g. the set of all finite blocks of bytes)
to a space containing a finite number of val-
ues (e.g. the set of all 128-bit blocks), must
have an infinite number of collisions! In prac-
tice, however, you’re unlikely to ever actually
encounter a colliding pair. You’d have to ex-
amine about eight billion values every second

to have a greater than 50% chance of finding a
collision in your lifetime.?

Following a crushing defeat on the battlefield,
we find that our commander has mended his
ways and is using a digest algorithm instead of
the checksum algorithm:

Msg in ASCII : L A N D
Msg in decimal : 76 65 T8 68
Msg + hex digest : 76 65 78 68
F87C04A7D828D9B050773B33DE2382FE

While our commander might find transmit-
ting F87C04A7D828D9B050773B33DE2382FE by
smoke signal to be a little inconvenient, it’s ex-
tremely unlikely that the enemy will be able to
find a substitute message that has the same di-
gest. As a consequence, any observer who sees
the smoke signal digest can have confidence in
any corresponding message. The digest acts as
a secure form of authentication.

In addition, digest algorithms are constructed
so as to make it extremely difficult to recover
any part of the original message from the digest.
Thus, even if the message is secret, the general
can transmit its digest publicly (by smoke sig-
nal) with confidence. The only threat to secrecy
arises if the number of messages 1s so small that
the opponent could predict some of them, calcu-
late their digests, and hence “recognise” partic-
ular messages by their digests. This threat can
be eliminated by starting each message with a
fixed amount of noise.

4 The Essential Property

From a practical point of view, the essential
property of digests is:

Property: From a practical per-
spective, digest algorithms imple-
ment the apparent miracle of pro-
viding a one-way one-to-one map-
ping between the infinite set of
data blocks and the finite set of n-
bit digests.

1Calculation: A birthday attack on 128-bit space
over seventy years would require the evaluation of
V2128 /(70 % 365 * 24 x 60 * 60) values per second.



Of course, the mapping isn’t really one-to-one,
but for all practical purposes we can consider it
to be. The “proof” of this is that it’s practically
impossible to demonstrate that the mapping is
not one-to-one, as it’s practically impossible to
find a collision!

Thus one way to gain a practical mastery in the
application of digests is simply to imagine that
they really are one-to-one (even though they’re
not). For all practical purposes, the digest of
a block of data can act as that block’s unique
tdentity. The various applications of digest al-
gorithms flow naturally from this perspective.

5 Applications

The special properties of digests lead naturally
to a variety of applications:

5.1 Disk monitoring

Digests can be used to detect changes in file
systems. If the digest of a file is recorded, any
future change in the file can be detected by cal-
culating the digest of the file and comparing it
to the recorded digest. At first glance, it might
seem that checksums would work just as well.
However, digests provide two major advantages.
First, digests are much wider than checksums,
providing far greater assurance that no change
has occurred when the values do match. Second,
digests provide more security against attacks by
intruders and viruses. A clever intruder might
find it easy to modify a file in such a way that
the modified file has the same checksum as the
old file, but would find it practically impossible
to fool a digest. The public security tool Trip-
wire[Kim94] [Spafford92] and the commer-
cial data integrity tool Veracity[Williams94]
[Rocksoft94] both record digests to monitor
files.

5.2 TFile transfers

Digests do not have any special application to
the verification of file transfers. However, as
they are wider than most checksums, digests
can provide a far higher degree of confidence

in the transfer than ordinary checksums. As
the volume of packets transmitted through data
networks increases, existing checksums may not
provide a sufficiently high degree of checking.
For example, a 16-bit checksum with a one in
65536 chance of a false positive would have
about an 8% chance of failing to detect at least
one error in the transmission of 3000 blocks
down a phone line requiring an average of three
attempts to transfer each block.? For a 32 bit
checksum, there would be about an 0.0001%
chance.® Digests are usually 128-bits or wider
and effectively eliminate this uncertainty.

5.3 Notarization

Digests can be used to timestamp (notarize)
blocks of data (e.g. documents).
rize a document, publish its digest in a secure
archival medium, such as the classified section
of a widely circulated and archived newspaper.
Once this is done, the document can be shown
to have existed at that time by producing a
machine readable copy of the document, along
with a reference to the archive. This evidence,
combined with the computational infeasibility
of creating a document that would match the di-
gest, provides cryptographic proof that the file
existed on or before the date when the newspa-
per was published. Publication of a document’s
digest is equivalent to timestamping the docu-
ment.

To nota-

The beauty of this form of timestamping is that
it can be performed silently (i.e. without any-
one sighting the document or even noticing) and
securely (i.e. the cryptographic “proof” is very
strong). Some specific applications of this no-
tarization technique are: 1) stamping the date
of invention for patents without disclosing the
invention to anyone, 2) stamping critical cor-
porate or government documents so that they
can’t be forged or tampered with at a later date.

Warning: Although timestamping using digests
provides extremely strong cryptographic proof of
the existence of a document at a particular time,
and would probably convince most cryptologists,
to our knowledge such proof has not yet been
tested in court.

2Calculation: 1 — (65535/65536)9000,
3Calculation: 1 — ((232 — 1)/232)6000.



5.4 Private key authentication

Digests can be used to implement the authenti-
cation of messages between two parties sharing
a secret key K. To send a message, the trans-
mitter appends the secret key to the message M,
computes the digest of the result X=d(MK),
and then transmits MX.* The receiver re-
ceives M’X' and authenticates M’ by testing
for X! = d(M'K). This scheme works because
any active eavesdropper would have only M and
X to work with, and would have to find some
NY such that Y = d(N K) without knowing K.
This is equivalent to the problem of breaking
the digest.

One attack on this scheme is the playback at-
tack. An opponent could record one of the mes-
sages and play it back later, to some detrimental
effect. This attack can be prevented by includ-
ing some unique stamp in each message that
identifies 1t as being current. Some stamping
ideas are: the date and time, a serial number,
or one of a set of agreed numbers (with a record
being kept of the ones used).

5.5 Public key authentication

Digests can also be used as a component of
public key authentication. The most straight-
forward way to transmit a message with public
key authentication is for the transmitter to ap-
pend some redundant information R to the mes-
sage M, encrypt M R using the private key, and
transmit the result. The receiver can authenti-
cate the transmission by decrypting it using the
public key and checking that the received redun-
dant information is consistent with the received
message. The disadvantage with this scheme 1is
that some public key methods (e.g. RSA) are
quite slow, and, if there is no need for secrecy,
it’s inefficient to have to encrypt the entire mes-
sage just to provide authentication. A more ef-
ficient alternative is to encrypt just the digest
of the message, using the private key. The en-
crypted digest can be appended to the unen-
crypted message to provide efficient 16-byte au-
thentication.

4Note: In this paper XY usually denotes concatena-
tion, not multiplication.

5.6 Storage of passwords

Multi-user computer systems have to store a
database of passwords to enable them to au-
thenticate users. However, it’s insecure to
keep a file of passwords anywhere in the com-
puter system, as it’s possible that an intruder
might somehow read parts of the file without
first breaking system security (e.g. the intruder
might find part of the file in a recycled block on
the disk). The solution is to store not the pass-
words themselves, but their digests. This en-
ables the operating system to check passwords
of users logging in, but does not enable an in-
truder who stumbles across the digests from re-
constructing the passwords themselves. This
scheme is currently in use in most operating sys-
tems (see [EvansT4] for an early paper on this
topic). One attack on this scheme is to feed
each word in a dictionary through the digest al-
gorithm and compare the resulting digests with
the digests in the password file. This attack can
be slowed by generating a random salt for each
password entry, storing it with the entry, and
calculating digests from the password and the
salt. This forces the opponent to reprocess the
entire dictionary for each password entry.

5.7 Proof of existence

Digests can act as a proof of the existence of a
particular block of data, making them suitable
for remote server verification. Using digests, an
entity B can prove to an entity A that it pos-
sesses a particular block of data (that A also
possesses). The most obvious way to do this
(short of having B actually transmit the block
to A) would be simply to have B send A the di-
gest of the block. Unfortunately, this is not con-
vincing as A might suspect that B has thrown
away the data and is merely storing the digest!
Stronger proof can be achieved by arranging for
A to challenge B by sending B a random num-
ber R. To respond, B calculates and returns the
digest of RD. A can then perform the same cal-
culation to verify that B still possesses the data.
It’s important that RD is used rather than DR
as if DR were used, B could simply process D
once, throw D away, and store only the 128-bit
state of the digest algorithm.

This technique can be applied to audit backup



services. The client could generate a large
backup file and then calculate and record the
digests of the file appended to a hundred or so
different random values. These random num-
ber/digest pairs could then be used on a regu-
lar basis to challenge the backup service to prove
that it still has the file, even if the client doesn’t.
Such proof would be secure, efficient and would
require just a few bytes of network traffic. To
the author’s knowledge, this is an original ap-
plication for digest algorithms.

5.8 Protocol protection

The capacity of digests to act as proof of the
existence of data also leads to a protocol pro-
tection scheme. Suppose that you are devel-
oping a commercial product of some kind that
uses some kind of protocol or file format, and
you don’t want competitors producing interop-
erable products. One way to do this is to patent
an algorithm and then build it into the protocol.
For example, if the protocol relies on compres-
sion, a data compression patent could be used
to stop interoperable products. However, this
is a rather “overengineered” approach. Digests
provide the possibility of a simpler way.

To use a digest to protect a protocol, make the
calculation of the digest of blocks of data and
a key K an essential part of the protocol. For
example, K could be appended to each network
packet and the digest of the result transmitted
with each packet. The next step is to choose a
K that is copyrighted! K could be part of your
program, a technical paper, a copyright mes-
sage, or anything else that is obviously a copy-
righted work and is small enough to be embed-
ded in executable programs. Once all this is in
place, the creation of an interoperable product
will be either computationally or legally infeasi-
ble, for it will be computationally infeasible to
interoperate without K, but if K is used, you
can sue them for copyright infringement of K!
Even if an attempt 1s made to hide K in the
compatible product, the non-invertibility of di-
gests, and their use as a proof of existence of in-
formation could be used to prove that the com-
patible product must contain K somewhere! To
the author’s knowledge, this is an original appli-
cation for digest algorithms and has never been
tested in court.

5.9 Data structures

Because 1t’s extremely improbable that colli-
sions (different inputs, same output) will ever be
encountered in practice, digest algorithms can
be used in data structures to generate unique
fixed-length 1identifiers for arbitrary blocks of
data in situations where the identifier of identi-
cal blocks must be the same, but arbitrary iden-
tifiers (e.g. serial numbers) cannot be assigned
because there is no central entity to issue iden-
tifiers.

For example, a network of computers imple-
menting a distributed database of documents
could collect documents from their various in-
put sources during the day and then synchro-
nize at night by exchanging and comparing
the digests of the new documents. Checksums
could be used for this purpose, but would re-
quire a follow-up comparison between docu-
ments whose checksums matched. Digests pro-
vide enough assurance of uniqueness to elimi-
nate the need for any such follow-up compari-
som.

This example of a document synchronization
system is just one application for digests in data
structures, and it’s likely that they could be ap-
plied in many other data structure applications
as well. The essence is that the digest can act
as a convenient identity for a block of data.

5.10 Summary

Perhaps the most exciting aspect of these ap-
plications is that they do not require a great
degree of cryptographic sophistication to imple-
ment. All that one needs is a digest algorithm
and an understanding of the properties of di-
gests mentioned earlier.

6 How Secure Are Digest

Algorithms?

In assessing the security of digest algorithms,
we must consider their strength in the face of
random and intelligent attacks.

The security of digest algorithms against ran-
dom attacks can be measured in the same way



as for checksums. As most digest algorithms
produce 128-bit (16-byte) digests, the chance of
a random error in the data going undetected
is astronomically small, being just one in 2!%3
(about one in 3.4 x 10%®). To be this unlucky,
you would have to win a million-ticket lottery
six times in a row!> Thus, because of their
increased width, digests generally provide far
more protection against random attacks than
checksums.

Assessing the strength of a digest algorithm
against attacks by an intelligent opponent is
very much harder, as it is possible that any di-
gest algorithm could have a hidden weakness
that could be exploited. Currently, the only
way to determine if a digest algorithm is secure
1s to expose 1t to public scrutiny over a period
of years. Unfortunately, the field of digests is
relatively young and so most digests are only a
few years old.

If we ignore the potential for hidden weaknesses,
and assume that the digest algorithm being as-
sessed provides perfect randomness, we need
also to take a look at that other determinant
of security: width. High randomness in a di-
gest algorithm is no use if the opponent can use
brute force to search the digest space. As an
n-bit digest can take 27 different values, any
opponent attempting to search this space will
find a match after an average of 27! attempts.
For a 128-bit digest this is 2127 (1.7 x 103%) at-
tempts. This 1s highly secure. Even if an op-
ponent could test 10° new messages per second
(which in 1994 technology would require at least
one thousand high speed CPUs), it would still
take about 5.4 x 10%! years.®

Unfortunately, there is a different kind of brute-
force attack, called a “birthday attack” that re-
duces the amount of work required from O(2")
to O(v/27). Birthday attacks are named after
the famous birthday paradox which states that
a group of just 23 people are needed for there to
be a probability of at least one half that at least
two people in the group share the same birth-
day. It’s considered a paradox because common
sense suggests that many more people would be
required. Birthday attacks do not provide an

5Caleulation: 108° = 10%¢ ~ 1028,
6 Calculation: (2127/10%)/(365 % 24 * 60 = 60) & 5.4 X
1021,

opponent with a faster-than-brute-force way of
finding a document having a particular digest,
but they do allow an opponent to create a pair
of documents having the same digest in about
V27 attempts. To execute a birthday attack,
the opponent generates v/27 random documents
and computes each document’s digest. The set
of such digests is then searched for duplicates.
A result related to the birthday paradox states
that the probability that there will be at least
one matching pair will be about 0.5.

In a variation of this attack, two documents can
be produced that are approximations of two tar-
get documents, and which have the same digest.
This would enable an opponent to present one
of the two documents officially and then later
substitute the second document [Yuval79].

How exposed to birthday attacks are existing
digest algorithms? As it happens, not very.
But birthday attacks do bring digest algorithms
much closer to the brink. If a digest algorithm
produces a 128-bit digest, then a birthday at-
tack will require an average of 25 operations
to succeed (instead of 212=1). At 10° tests per
second, 2%% tests would take over 500 years.”
Thus, a very determined opponent with a net-
work of one thousand workstations, with a solid
year of CPU time to burn, would have a one in
500 chance of finding two documents with the
same digest. Whether you consider this to be
a serious risk depends on the criticality of your
data.

For further information on attacks on digest al-
gorithms, see [Pieprzyk93]. For more informa-
tion on how digest algorithms fit into the field
of cryptology, see [Simmons92].

7 Technical Restrictions

This section contains a brief discussion of tech-
nical restrictions on the use of digest algorithms.

Memory consumption: Most digest algo-
rithms require very little memory, using it only
for their internal state (e.g. 128-bits), and to
buffer incoming bytes into blocks (e.g. 64 bytes).

CPU consumption: Digest algorithms are
much slower than checksum algorithms as di-
gest algorithms have to provide a computational

TCalculation: (2%%/10%)/(365 * 24 x 60 x 60) ~ 580.



barrier for their opponent rather than merely
a probabilistic one. However, digests are still
fast enough to warrant the routine replacement
of checksums by digests in many applications.
The design of secure, high-speed digest algo-
rithms is an active research area [Anderson94]
[Pieprzyk93] [Sci.crypt].

8 Legal Restrictions

Copyright: Many of the more popular di-
gest algorithms have implementations whose C
source code is available through the Internet by
FTP. Many of these implementations come with
public copyright licences that apply only minor
restrictions to the programmer, such as requir-
ing that the algorithm be properly identified.
The MD5 algorithm is one such algorithm and
its copyright message is reproduced here in full
as an example:

Copyright (C) 1991-2, RSA Data
Security, Inc. Created 1991. All rights
reserved.

License to copy and use this soft-
ware 1s granted provided that it is
identified as the “RSA Data Security,
Inc. MD5 Message-Digest Algorithm”
in all material mentioning or referenc-
ing this software or this function.

License is also granted to make
and use derivative works provided that
such works are identified as “derived
from the RSA Data Security, Inc.
MDb5 Message-Digest Algorithm” in
all material mentioning or referencing
the derived work.

RSA Data Security, Inc. makes no
representations concerning either the
merchantability of this software or the
suitability of this software for any par-
ticular purpose. It is provided “as is”
without express or implied warranty of
any kind.

These notices must be retained in
any copies of any part of this docu-
mentation and/or software.

An important aspect of this notice 1s that it does
not restrict the commercial use of MD5. This

means that you can incorporate MD5 into com-
mercial products so long as you conform with
the minimal requirements above.

Patents: Software patents provide far greater
restrictions than copyright as they protect the
algorithm itself, rather than a particular imple-
mentation. Although quite a few digest algo-
rithms are patented (e.g. MDC-2 and MDC-4
(by IBM)), these patents are usually fairly nar-
row, and the field seems to be remarkably free
from the kind of broad software patents that
have muddied fields such as data compression.
In particular, many digest algorithms (e.g. MD5
and SHA-1) appear to be entirely patent free.

Exportability: The US Government’s current
policy is to restrict the export of cryptographic
products for defence reasons. This policy has
been propagated through treaties to associated
countries such as Australia and has caused un-
certainty about what software can and can’t be
exported.

Although digest algorithms embody crypto-
graphic strengths, 1t seems that there is no prob-
lem with exporting them, so long as they do not
provide secrecy, just authentication. However,
it would be wise to check with the relevant au-
thorities anyway.

9 A Short Catalogue of Di-
gest Algorithms

This section contains a description of some of
the more common digest algorithms.

MD2: This is the “RSA Data Security, Inc.
MD2 Message-Digest Algorithm”. The defining
document for MD2 is RFC-1319[Kalisky92].
MD2 is secure, but slow. Its width is 16 bytes
(128 bits).

MD4: This is the “RSA Data Security, Inc.
MD4 Message-Digest Algorithm”. MD4 is a
fast, fairly secure digest algorithm. However,
when 1t was released, it became so popular that
its inventors became concerned that it might
not be secure enough for widespread use and re-
leased a more secure version which they named
MD5. As such, MD5 is preferred. The defining
document for MD4 is RFC-1320[Rivest92al].
Tts width is 16 bytes (128 bits).



MD5: This is the “RSA Data Security, Inc.
MDb Message-Digest Algorithm”. This is a
fast and secure algorithm. The defining doc-
ument for MD5 is the RFC-1321[Rivest92b].
Tts width is 16 bytes (128 bits).

SHA, SHA-0, SHA-1: (Secure Hash Algo-
rithm). This is a digest algorithm proposed by
the US NIST (United States National Institute
of Standards and Technology) agency as a stan-
dard digest algorithm. The terminology here is
a little confusing. NIST released a first version
of SHA which it referred to as “SHA” [NIST93]
. It subsequently found a problem with it and
released a second version which it called “SHA-
17 [NIST94]. As it’s likely to be confusing to
talk about “SHA” and “SHA-1”, it makes sense
to call the earlier algorithm “SHA-0” and use
the term “SHA” only to refer to the entire group
of digest algorithms.

SNEFRU: This is the Snefru algorithm, also
known as “The Xerox Secure Hash Function”.
Although the name “Snefru” looks as if it is an
acronym, 1t is actually the name of a Pharaoh
of ancient Egypt. The Snefru algorithm is de-
scribed in detail in [Merkle??]. Unlike the
other algorithms, Snefru has two parameters
called the security level (number of transforma-
tion iterations) and the output size (width of
the digest in longwords (4-byte chunks)), each
of which can take either the value 4 or 8. This
leads to four different versions of Snefru. Snefru
is one of the few digest algorithms that yield a
digest longer than 16 bytes. This in itself could
provide extra security, particularly if you are
concerned about birthday attacks.

Other Digest Algorithms: Other digest al-
gorithms that the author has heard of, but not
vet tracked down are: 3-WAY, A5, BLOW-
FISH, FEAL, FISH, Haval, MDC-2, MDC-4, N-
hash, Purdy Hash, RIPE-MACI1, RIPE-MAC3,
RIPE-MD, RSADSI, SAFER, SEAL, VINO,
and WAKE. There are apparently many more.
Some of these are reputed to be better (faster,
more secure) than the digests described earlier.
Some are them are reputed to have been broken.

10 Getting Started

The best way to get started with digest algo-
rithms is simply to try one out. A good algo-

rithm to start with is the RSA Data Security,
Inc. MD5 Message-Digest Algorithm (“MD5”
for short). Tt is a suitable “default” algorithm
because it 1s simple, well-defined, well-known,
patent-free, not too slow, has been exposed to
the cryptological community for a few years,
and has source code readily available by FTP
through the Internet. The MDb) algorithm is
described in RFC-1321, which also contains an
implementation in C and a small test suite so
that you can confirm that you’ve got it working
correctly. RFC-1321 can be obtained by FTP
from: munnari.oz.au:/rfc/rfc1321.Z.

11 Conclusions

Digest algorithms are one of the simplest and
most flexible tools produced by the revolution in
cryptography. By providing small, fixed-width,
computationally secure identities for the infi-
nite set of data values, digest algorithms pro-
vide a tractable identity that can be used in a
variety of applications including disk monitor-
ing, intruder and virus detection, file transfer
verification, notarization, authentication, pass-
word management, and data structures. All this
power 1s delivered by simple, easy-to-use algo-
rithms whose patent-free implementations in C
are freely available on the Internet by FTP. The
simplicity, power, and availability of digest al-
gorithms means that they should now be a stan-
dard tool in every programmer’s toolkit.

12 Glossary

Birthday attack: A form of attack on digest
algorithms in which randomly generated inputs
are fed through the digest algorithm to generate
a set of input/output pairs whose output com-
ponents are then searched for duplicates. Birth-
day attacks enable digest algorithms that are n
bits wide and which have an a-priori difficulty
of O(2") to be cracked with just O(v/2") effort.
That’s a great birthday present for any crypt-
analyst.

Broken: A digest algorithm is said to be bro-
ken when someone has publicised a computa-
tionally feasible method for finding two inputs



that map to the same output. A digest algo-
rithm is sometimes also considered to be broken
if two such inputs are ever shown to exist.

Checksum: The number produced by a check-
sum algorithm. Checksums are typically 1, 2,
or 4 bytes wide.

Checksum algorithm: A hash algorithm that
does not attempt to provide cryptographic pro-
tection against inversion. The term “checksum”
originally referred to checking algorithms that
summed the bytes, but is now often used to refer
to any non-cryptographic checking algorithm.

CRC: (Cyclic Redundancy Code) A class of
“checksum” algorithms that operate by treating
the message as a large binary number and then
dividing it in binary without overflow by a fixed
constant. The remainder is the “checksum”.

Digest: The number produced by a digest algo-
rithm. Typically this number i1s 16 to 32 bytes
wide.

Digest algorithm: A digest algorithm is a
hash function that is computationally infeasible
to invert. That is, given a digest produced by a
digest algorithm, it is very difficult (i.e. compu-
tationally infeasible) to find a message that has
that digest.

Hash function: In general Computer Science,
this term is used to refer to a non-cryptographic
function that is used to locate elements in a so-
called “hash table”. However, in the field of
cryptography, it has a much stronger crypto-
graphic flavour and is usually used to refer to a
digest algorithm. Even so, those using the term
often still feel the need to to add a qualifier such
as “strong” or “secure” asin “The Xerox Secure
Hash Function”.

MAC: Message Authentication Code. A digest
that has been calculated from a block of data
and a secret key, enabling any receiver possess-
ing the key to authenticate the message.

MD5: An abbreviation for the “RSA Data Se-
curity, Inc. MD5 Message-Digest Algorithm”.

MDC (Manipulation Detection Code):
Another term for “digest”. This acronym 1is
favoured by IBM who have named their digest
algorithms MDC-1, MDC-2, and MDC-4.

Message: An abstract term used in the cryp-
tographic literature to denote the data fed into
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a checksum or digest algorithm.
Message digest: Another term for “digest”.

SHA: (Secure Hash Algorithm). This is a di-
gest algorithm proposed by the US NIST (Na-
tional Institute of Standards and Technology)
agency as a standard digest algorithm. The
terminology here is a little confusing. NIST re-
leased a first version of SHA which it referred
to as “SHA” [NIST93]. It subsequently found
a problem with it and released a second ver-
sion which it called “SHA-1” [NIST94]. Asit’s
likely to be confusing to talk about “SHA” and
“SHA-17, it makes sense to call the earlier algo-
rithm “SHA-0” and use the term “SHA” only
to refer to the entire group of digest algorithms.

SHS (Secure Hash Standard): A NIST
standard that specifies the Secure Hash Algo-
rithm (SHA).

Signature: The term “signature” is generally
used in the field of cryptography to describe a
method in which an agent can digitally “sign” a
document in a manner that does not allow him
to deny the signature at a later date. However,
in the context of integrity checking tools, the
term 1is used more loosely to denote the set of
checksum and digest algorithms.

Snefru: Snefru is a digest algorithm produced
by Xerox. It’s official name is “The Xerox Se-
cure Hash Function”.

Tripwire: Tripwire is a free public data in-
tegrity program that employs digest algorithms
to detect changes in Unix file systems[Kim94]
[Spafford92].

Veracity: Veracity is a commercial data in-
tegrity software tool that was created by the
author of this paper. Veracity employs digest
algorithms to detect changes in file systems. For
more information, see [Williams94] or [Rock-
soft94] or contact the author or Rocksoft.

Width: The width of a checksum or digest al-
gorithm is the number of bits that the algorithm
produces as its signature.
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