Estimating Neighbourhood-Level Behavioural Risk Factor Prevalence from Large Population-Based Surveys: A Bayesian Approach

L Seliske1, T Norwood1,2, J McLaughlin2,3, S Wang2, C Palleschi4, E Holowaty2

1. Cancer Care Ontario, Toronto, ON, Canada
2. Dalla Lana School of Public Health, Toronto, ON, Canada
3. Public Health Ontario, Toronto, ON, Canada
4. Lambton Public Health, Sarnia, ON, Canada
Outline

• Background
• Rationale & Objectives
• Study Area
• Methods
• Results
• Strengths & Limitations
• Conclusions
• Acknowledgements
Background

• Meeting local health needs a key objective of public health units (PHUs)

• Localized risk factor prevalence estimates:
 i. Provide information for targeted public health programs
 ii. Inform neighbourhood-level models of related chronic diseases
• Complex surveys provide high quality data at a regional level, but not neighbourhood level

• Small numerator and denominators are a challenge in neighbourhood-level analyses

• Bayesian methods can overcome these challenges
Study Rationale & Objectives
Study Rationale

To generate neighbourhood-level covariate-adjusted estimates of behavioural risk factors:

i. to help public health planning

ii. to inform future neighbourhood-level models of chronic disease
Objectives

i. Estimate current smoking and excess bodyweight prevalence with acceptable precision and accuracy, accounting for spatial correlation and potential confounders

ii. Identify areas of unusually high prevalence

iii. Describe the spatial distribution over the entire study area by sex
Study Area

Erie-St. Clair LHIN
Study Area
Methods
CCHS Data

• Risk factor data from Canadian Community Health Survey (CCHS), 5 cycles (2000-2001 to 2009-2010). Similar to BFRSS

 Current Smoking: smoke daily or occasionally

 Excess Bodyweight: body mass index (BMI) > 25 kg/m²

• Postal code conversion file used to identify respondents’ neighbourhoods
Geographical Data

• Geographical unit ("neighbourhood") = 2006 Census Dissemination Area (DA)
 - Smallest geographical unit with full set of census data
 - Population: 400-700 people
 - Size varies: urban area =~ city block, rural DAs are larger, defined by rivers, roads, etc.
Bayesian Analysis

• Problems:
 i. Small numbers of cases (0, 1, 2,...)
 ii. Spatial dependence

• Solution: Bayesian modeling with hierarchical random effects
 - Allows for uncertainty due to low counts
 - Uses spatial dependence to pool information from adjacent areas
Fixed vs. Random Effects

Deterministic Model

\[f(x) \]

\[x_1, x_2, x_3 \rightarrow y_1, y_2 \]

Stochastic Uncertainty

\[f(x) \]

\[x_1, x_2, x_3 \rightarrow y_1, y_2 \]

Uncertainty Propagation

\[y_1 \sim 5.26 \pm 0.04 \]

Reliability = 87.0%
Model Specification

• **Outcome**: binary individual-level risk factor (yes/no) for current smoking and excess bodyweight

• **Logistic regression**: \(\log\left(\frac{p}{1-p}\right) \)

• **Covariates**: CCHS cycle, age group (10 yr groups), median neighbourhood-level income

 - **Model 1**: CCHS cycle & age group only
 - **Model 2**: CCHS cycle, age group, income
• Bayesian analysis using Besag, York & Mollié (BYM) model

• Post-stratification weighted findings based on neighbourhood demographics due to complex CCHS sampling

• SaTScan used to corroborate findings using raw CCHS data
Results
Current Smoking: Model 2

Percentage of Current Smoking (# DAs)
- < 20.0 (124)
- 20.0 - 24.9 (265)
- 25.0 - 29.9 (315)
- 30.0 - 34.9 (220)
- ≥ 35.0 (102)
- Insuff. Data (85)

Posterior Probability of Current Smoking > 27.1% (# DAs)
- 0.95 - 1.00 (141)
- SaTScan Cluster

Percentage of Current Smoking (# DAs)
- < 15.0 (73)
- 15.0 - 19.9 (297)
- 20.0 - 24.9 (353)
- 25.0 - 29.9 (217)
- ≥ 30.0 (107)
- Insuff. Data (64)

Posterior Probability of Current Smoking > 22.6% (# DAs)
- 0.95 - 1.00 (133)
- SaTScan Cluster
Excess Bodyweight: Model 2

Percentage with Excess Bodyweight (# DAs)
- < 58.0 (237)
- 58.0 - 59.9 (205)
- 60.0 - 61.9 (234)
- 62.0 - 63.9 (203)
- ≥ 64.0 (145)
- Insuff. Data (87)

Posterior Probability of Excess Bodyweight >60.5% (# DAs)
- 0.95 - 1.00 (18)

SaTScan Cluster

Males

Females

Percentage with Excess Bodyweight (# DAs)
- < 44.0 (321)
- 44.0 - 45.9 (253)
- 46.0 - 47.9 (243)
- 48.0 - 49.9 (146)
- ≥ 50.0 (77)
- Insuff. Data (71)

Posterior Probability of Excess Bodyweight >45.6% (# DAs)
- 0.95 - 1.00 (16)
Validity & Precision

Validity: Bayesian model-based estimates corresponded to CCHS design-based results

Precision: Coefficient of variation (CV; std error/mean). Statistics Canada’s CV thresholds (low, marginal, acceptable) for each neighbourhood

Current Smoking:
Model 1: mostly marginal (M: 90.1%, F: 96.5%), Model 2: mostly acceptable (M: 89.1%, F: 62.1%)

Excess Bodyweight: Mostly acceptable CVs in both sexes and models (>99%)
Strengths & Limitations

Strengths:

• High resolution heterogeneity vs. surveys
• Consistent Bayesian & SaTScan findings
• Assessed validity & precision

Limitations

• Self-reported survey data
• CCHS not designed to be pooled
• Assume neighbourhood-level household income stable over time
Conclusions

• Estimating high resolution risk factor prevalence from large survey data is feasible

• Better precision for Model 2, suggesting that inclusion of key covariates is important

• Applications for public health planning and studies of related chronic disease outcomes (e.g. cancer) at neighbourhood level
Acknowledgements

• Lambton Community Health Study Board
• Cancer Research Society Environment-Cancer operating grant & Mount Sinai Hospital, Toronto ON
Thank you!

laura.seliske@cancercare.on.ca