“The utility of rapid case ascertainment for a population-based case control study on Hodgkin’s lymphoma”

Nancy Mueller ScD
Harvard School of Public Health
Development of our Rapid Case Identification Capability

• Previous work with the Massachusetts Cancer Registry
• Expansion of the Dana Farber/Harvard Cancer Center provided venue for rapid case core
• Our NCI program project (“HL and the Epstein Barr virus”) provided the practicum for getting rapid case to field
Epidemiologic Analysis of the EBV and HL

Study Design: Two companion population-based case-control studies in greater Boston area and the state of Connecticut

Cases: Parallel rapid case identification – about 60 hospitals

Controls: MA - Town Book controls
 CN - Random digit dialing and Medicare lists
Data-gathering

• Telephone interviewing based at Harvard
• Each site handled pathology block retrieval and phlebotomy (cases)
• DNA obtained from population controls by mail (“swish and spit”) via Harvard
Yale Collaborators

• Epidemiology
 Tong Zhang, ScD co-PI
 Patti Owens

• RCA
 Judith Fine
 Rajni Mehta
The Role of Yale RCA for our Rapid Case Identification Core

- Model
- Mentoring
Utility of Rapid Case Identification to Researchers

• Reduces cost
 – Reduces staff, training, supervision

• Builds on existing relationships with hospitals
 – MD sponsors
 – IRBs
Scientific Utility of using Multiple Sites

• Increases statistical power

• Comparability of data provides verification of internal validity of new findings
 – Example: Aspirin finding
Background

• HL involves the chronic expression of multiple inflammatory mediators
• NF-κB $\uparrow\uparrow$ inflammatory mediators
• In HL, NF-κB $\uparrow\uparrow$ in the cancer cells and appears required for survival and proliferation
• In HL, \uparrow prostaglandins \uparrow inflammatory response and cell division (Cox 1& 2)
Background -2

• Aspirin \downarrow NF-κB by binding to IKK-α in a dose-dependent manner

• Aspirin \downarrow COX 1 & 2 by irreversible binding

• These actions are specific to aspirin among commonly used analgesics
Hypotheses

- Aspirin use is negatively associated with HL

- This association is specific to aspirin among analgesics
Study Population

• Population-based case-control study
 – Greater Boston and State of Connecticut

• Cases: 15-79 at diagnosis (8/1997-12/2000), HIV-negative, alive (N= 507)

• Population Controls: Frequency matched by age group, sex, and state (N= 470)
Data on Analgesics

- Subjects interviewed by telephone
 - average frequency of aspirin, tylenol/acetaminophen, ibuprofen/other NSAID use during the past 5 years

 - composite variable
 - “regular use” = ≥ 2 times weekly
 - “non-users” = < 2 times weekly
Prevalence of reported medication use

<table>
<thead>
<tr>
<th></th>
<th>Aspirin use</th>
<th></th>
<th>Acetaminophen use</th>
<th></th>
<th>Ibuprofen use</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cases (%)</td>
<td>57 (11%)</td>
<td>450 (89%)</td>
<td>130 (26%)</td>
<td>377 (74%)</td>
<td>109 (21%)</td>
<td>398 (79%)</td>
</tr>
<tr>
<td>**Controls (%)</td>
<td>82 (17%)</td>
<td>388 (83%)</td>
<td>85 (18%)</td>
<td>385 (82%)</td>
<td>105 (22%)</td>
<td>365 (78%)</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>838</td>
<td>215</td>
<td>762</td>
<td>214</td>
<td>763</td>
</tr>
</tbody>
</table>
ORs* for reported medication use associated with HL

• Aspirin: 0.58 (0.40-0.84)

• Acetaminophen: 1.7 (1.2-2.4)

• Ibuprofen: 0.90 (0.65-1.3)
 – *(adjusted for age, sex, state of residence, and use of other medications)
Internal Validity: Aspirin

• Consistent by age, gender, other medication use

• Consistent by state:

 Massachusetts: $OR_{\text{ADJ}} = 0.54 \ (0.33-0.91)$
 Connecticut: $OR_{\text{ADJ}} = 0.62 \ (0.38-1.00)$
Internal Validity: Acetaminophen

• Consistent by age, gender, other medication use
• Not consistent by state:

 Massachusetts: $\text{OR}_{\text{ADJ}} = 2.33 \ (1.54-3.55)$
 Connecticut: $\text{OR}_{\text{ADJ}} = 1.29 \ (0.85-1.96)$
Collaborators

HSPH
Ellen Chang
Chung Hsieh
Pat Morey
Karen Pawlish
Kathryn Trainor

Yale University
Tong Zheng (Co-PI)
Judith Fine
Rajni Mehta
Patti Owens

Johns Hopkins
Richard Ambinder (Co-PI)
Mike Borowitz
Risa Mann
Edward Weir

ViroLab
Evelyne Lennette

We are grateful for the collaboration of the many physicians who sponsored this study at nearly 60 hospitals, and to the subjects whose participation made the research possible.