The Use of a New Completeness Measure and its Application

Description and use of the “Flow” method of Bullard et al., British Journal of Cancer, 2000

Presented to NAACCR Annual Meeting, June 2010, Québec City

Ron Dewar
Vickey Bu
Surveillance and Epidemiology Unit

Cancer Care Nova Scotia
Estimation of Completeness of cancer registration

- No realistic ‘Gold Standard’ method
- All methods have strengths and limitations
- Look for consistency between methods, especially methods that use different assumptions or data sources
Methods – a brief overview

- Semi-Quantitative: completeness *relative* to an external / historic standard
 - historic data methods
 - mortality:incidence ratios
 - number of sources per case
 - % histologically verified
Methods – a brief overview (2)

Quantitative – use information about observed cases to estimate the number of cases that have been unreported

- independent case-finding
- capture-recapture
- spatio-temporal modeling
- delay adjustment / modeling
- death certificate (DC) methods
 DC and M:I
 ‘Flow’
Completeness

At any time after the diagnosis of cancer, cases not registered can be classified as:

- **“Missing”**—diagnosed but not yet registered. May be registered later...

- **“Lost”**—diagnosed, not registered, deceased, and cancer not mentioned on the death certificate (DC). Will never be registered.
Registered?

Cancer has been diagnosed and patient is ...

- Alive
- Dead - ca. on DC
 - ca. not on DC

Registered, or will be

- "Missing"
- "Lost"
Completeness

- To estimate proportion ‘Missing’ and ‘Lost’ at time t since diagnosis, we need time-dependent proportions:
 - survival $s(t)$
 - mention of cancer on DC $m(t)$
 - time to registration $u(t)$

All estimated from registered patients.
Survival:

$s(t)$: % alive at start of interval

- standard registry product
- time to event process with censoring
- requirements:
 date of diagnosis
 date of death (any cause)
 end of follow-up / date last contact
 age, sex, cancer type, etc…
Mention: \(m(t) \): % with cancer on DC those dying in interval

Among registered patients who die, what proportion have a cancer diagnosis on their DC?

Cancer may not be the cause of death

Requirements:
- registry receives all DCs
- note any cancer mentioned on DC
- date of diagnosis

Cancer Care Nova Scotia
deaths in month 13
with ca. 11

days in month 11
with ca. 6
Registration

\[u(t): \% \text{ unregistered at time } t \]

‘registration’: *earliest* date the case became known, after which it would not be possible for the registry to miss the case

- not overwritten by subsequent data entry
- will depend on registry processes
- estimated from cases selected from *diagnosis* or *registration* point of view
Unregistered by Time Since Diagnosis (Registration: 2002 - 2008)
by Source of Registration

- Cancer Centre
- Haematology linkage
- Follow-back
- Usual reporting

% Unregistered vs. Time since diagnosis (years)
Estimates at time t_i

- **Missing**: p (alive and unregistered)
 \[
 = s(t_i) \times u(t_i)
 \]

- **Lost**: p (death in interval t_i
 and not registered yet
 and cancer not on DC)
 \[
 = [s(t_i) - s(t_{i+1})] \times u(t_i) \times [1 - m(t_i)]
 \]
Completeness by time since diagnosis

2000-2005

<table>
<thead>
<tr>
<th>Time</th>
<th>Missed</th>
<th>Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>3.2</td>
<td>0.30</td>
</tr>
<tr>
<td>12 months</td>
<td>2.0</td>
<td>0.31</td>
</tr>
<tr>
<td>18 months</td>
<td>1.6</td>
<td>0.32</td>
</tr>
<tr>
<td>24 months</td>
<td>1.2</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Completeness by cancer type

% at 18 months
missed lost

Colorectal 0.5 0.4
Lung 1.3 0.4
Breast (F) 0.5 0.1
Prostate 1.2 0.2
Gynaecologic 0.0 0.1
Haematologic 7.3 0.6
Completeness by age

Under 55: 1.0 missed, 0.1 lost
55 - 69: 1.1 missed, 0.2 lost
70+: 2.3 missed, 0.7 lost
completeness by time since diagnosis

diagnosed 2000 - 2005

% at 18 months
missed lost
2000 - 2002 9.0 .6
2004 - 2006 4.6 .7

Time since diagnosis (years)
by year of diagnosis

PLOT
- Blue: Haematologic 2000-02 cohort
- Red: Haematologic 2004-06 cohort
Completeness: ‘Flow’ method

- Extensive data, unusual programming
- Identifies situations where cases may be relatively incomplete: hematology, lung, older ages
- Assumptions:
 - independence of events
 - relevance of data on registered patients to understanding of unregistered patients
Completeness: work in progress

- Time to registration is key
 - what does ‘registration’ mean?
 - all cases, or just those deceased?
- How to handle DCO and DCI cases?
 - concern where DCO or DCI % is large
- Is there a fit to NAACCR certification needs?
 - (single year’s incidence data)
- Confidence intervals?
- Effect of fatal disease on time to registration (lack of statistical independence)
conclusions

➢ + estimation at any time post diagnosis
➢ + independent of external standard
➢ - data requirements
➢ - programming effort involved
➢ ? Sensitivity to failure of assumptions
➢ May be most useful for internal comparisons (eg, targeted ascertainment strategies)
Completeness: take-home message

- Many methods are available
- All require a leap of faith (just different!)
- A comprehensive review of completeness should include several methods
 - internal comparisons
 - external standards
$u(t): \% \text{ unregistered}$