The Health Information Future: Evolution and/or Intelligent Design?

North American Association of Central Cancer Registries Conference
Regina, Saskatchewan
June 14, 2006

Steven Lewis
Access Consulting Ltd., Saskatoon SK
& Centre for Health & Policy Studies, Univ. of Calgary
Main Premises

- The future of health and health care will depend largely on:
 - Our conceptual approach to health
 - The broad approach to health policy and resource allocation
 - Our ability to generate and use health information

- The more complex the system, the greater it taxes human ingenuity

- Health-related data has the potential to revolutionize health care - or not
Viewing Health Differently: The Population Health Revolution

- Highlights non-medical determinants of health
- Focus shifts from numerator (individual/case) to denominator (population)
- Preoccupied with SES-related health disparities that are mainly impervious to health care
- Individual destinies greatly influenced by formative years (0-3)
- Raises issue of diminishing returns from health care
Life expectancy at birth in 1999 by per capita total health expenditure in 1997 in 70 countries

Source: Leon, Gill & Gilson, BMJ 2001;322:591-4
The Biomedical Revolution

- Increasing understanding of relationship between genes, health, and environment
- Individual genetic signatures may predict health outcomes with and without therapies
- Plausible to envision drug and other therapies tailored to individual biological signatures
- Complicates and layers understanding of epidemiology
Implications for Science

- Need to move beyond correlations and inferences (we know something happened but don’t know why)
- Greater need to fully explain causal pathways (why something happened)
- Challenges some venerated methodologies, e.g., RCTs (because randomized groups may not in fact be identical in key aspects)
- Suggests a need for more comprehensive, integrated studies by interdisciplinary teams
Implications for Health Information

- Need more and more particular information to understand a person’s condition(s)
 - Genetic features and predispositions
 - Occupational and environmental exposures
 - Sentinel life events (SES, family, geographic)
- Architecture of health information will change at the clinical and analytical levels
- Linkability of “determinants” and health care use databases becomes critical
- Reporting will evolve to reflect changing understanding of cause and effect
The Electronic Health Record

- Widely endorsed in theory, many skeptics in practice
- Expectations and uses vary greatly:
 - Simple replacement for paper
 - Billing and productivity management
 - Interactive “smart” systems that link diagnostic data to evidence-based practice
 - Analysis of patient populations and impact of interventions
- Design and training will determine its value
Where Will IT Take Us?

- Huge potential for creating unique and powerful databases
- Ability to harvest and group world-wide data to discover most effective protocols for various conditions and groups
- Capacity to generate real-time, constantly updated reports at various levels of aggregation
- Insight into the outcomes of natural experiments arising from variations in practice
- Huge potential to reduce costs of intelligence-gathering
The APPROACH Database

- Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease
- Collects data on conditions, treatments, outcomes
- Patients sent questionnaires at regular intervals to assess clinical, economic, and health status outcomes
- 10 years and 100,000 cases now entered
- Generates reports for clinical and administrative purposes
- Generates population-based studies and evaluations
Conceptual Challenges (1)

- Deciding what information is relevant to health, illness, and outcomes
- Defining and recording information on prominent but vague conditions such as frailty
- Single-disease, fixed registries vs. virtual, flexible, on-demand groupings
- Role of narratives and notes vs. closed-ended variables (and software to mine them)
- Standardization of growing array of variables and inputs
Conceptual Challenges (II)

- Privacy issues - especially where data may be used for commercial purposes
- Relative importance of:
 - Clinical data
 - Socio-economic data
 - Community and environmental data
- Inclusion of decision-aid software (e.g., drug interactions, clinical guidelines)
- Ideological disagreements about inequality, disparities, and social policy
Implementation Challenges

- **Scale of investment required**
 - Most projects are underfunded
 - Often inadequate investment in training
 - Compromise is to start narrowly (and not terribly usefully)

- **Interoperability of systems**

- **Creating a culture of receptivity to IT and its potential**—especially among aging workforce

- **Lack of capacity or inclination to use data to maximum extent possible**
Evolution, Yes; Intelligent Design, Maybe

- Health care IT will continue to expand
- The pace of evolution needs to accelerate to
 - Generate new knowledge
 - Improve patient safety
 - Improve quality of care
 - Improve efficiency
- There is no perfect, ideal IT system
- It has to be adaptable, linkable, flexible
- Design should be compatible with emerging concepts of health and its determinants