Benign/Borderline Brain and ONS Tumors in the NAACCR Data

DURC Data Assessment Work Group

Bin Huang

2011 NAACCR Conference
6/23/2011
Authors

Louisiana Tumor Registry
Patricia Andrews, MPH
Meichin Hsieh, MPH
Qingzhao Yu, PhD
Xiaocheng Wu, MD, MPH

Cancer Prevention and Control CDC
Umed Ajani

University of Kentucky
Bin Huang, DrPH
Brent Shelton, PhD

American Cancer Society
Ahmedin Jemal, DVM, PHD

New York State Cancer Registry
Baozhen Qiao, PhD

Miller School of Medicine, University of Miami
Brad Wohler, MS
History of Brain & ONS Tumor Surveillance

- 1992. Central Brain Tumor Registry of the United States (CBTRUS) was formed.
- 1998. BTWG forwarded 4 recommendations to the NCCCS.
- 2000. Dialogue between the clinical community and the surveillance community to standardize the site and histology definition.
- 2002. President signed public law 107-260, the benign brain tumor cancer registries amendment act.
- 2003. SEER and NAACCR agreed to report non-malignant brain tumors for cases diagnosed January 1, 2004 or later.

http://training.seer.cancer.gov/brain/non-malignant/history/
http://www.naaccr.org/LinkClick.aspx?fileticket=tm-wYbKcnIg%3D&tabid=95&mid=477
Reportable benign and borderline ONS tumor:

- Meninges (C70.0, C70.1, C70.9)
- Brain (C71.0- C71.9)
- Spinal cord, cranial nerves and other parts of ONS
 - Spinal Cord (C72.0), Cauda Equina (C72.1)
 - Cranial Nerves (C72.2-C72.5), Other ONS (C72.8, C72.9)
- Other endocrine glands and related structure
 - Pituitary Gland (C75.1), Craniopharyngeal Duct (C75.2)
 - Pineal Gland (C75.3)

Data Collection of primary central nervous system tumors: NPCR training material. 2004
Study Objectives

• Examine characteristics of the benign/borderline brain and ONS tumor data in the NAACCR Data
• Examine the completeness of the benign/borderline brain and ONS tumors by state
• Identify factors associated with completeness
Methods

• 2004 – 2007 brain and ONS cases (including endocrine glands and related structures) from the CINA Deluxe data set 1995 – 2007
 • 48 states and regions in U.S.
 • Benign/Borderline brain and ONS tumor (N=141,414)
 • Invasive brain and ONS tumor (N=91,261)
 • DCO and autopsy cases included

• Variables examined
 • Race, gender, age at diagnosis, metro status, education and poverty status at county level, surgery status, diagnostic confirmation, type of reporting source

• Analytical methods
 • Age-adjusted rates, Pearson correlation, coefficient of variation (CV)
 • Multiple linear regression with rate ratio of benign/borderline vs. malignant as outcome variable
Age Adjusted Rates for Benign/Borderline

Age Adjusted Rates by Year of Diagnosis

Age Adjusted Rates by Age Group

Age Adjusted Rates by Race

Age Adjusted Rates by Gender
Age Adjusted Rates for Benign/Borderline (Cont.)

Age Adjusted Rates by Site Group

- Meninges: 6.4
- Brain: 1.3
- Spinal Cord, Cranial Nerves, and other ONS: 2.8
- Endocrine Glands and related Structure: 1.8

Age Adjusted Rates by Metro Status

- Metro: 12.6
- Rural: 11.1

Age Adjusted Rates by Poverty Status

- <5.0%: 12.3
- 5.0%-9.9%: 12.6
- 10%-19.9%: 12.2
- 20+%: 12.4
Rates for Benign/Borderline vs. % Surgery

\[\rho = -0.57, P < 0.001 \]
Rates for Benign/Borderline vs. % Microscopically Confirmed

\[\rho = -0.52, P = 0.002 \]
%Surgery vs. % Microscopically Confirmed in Benign/Borderline

\[\rho = 0.81, P < 0.001 \]
Rates for Benign/Borderline and Malignant

- Std Dev = 2.29, CV = 0.20
- Std Dev = 0.75, CV = 0.10
Rate Ratio (Benign/Borderline vs. Malignant)

\[\rho = 0.84, \ P < 0.001 \]
Completeness of Benign/Borderline Brain and ONS Data

- Compared to malignant brain and ONS tumor, much larger variation of rates for benign/borderline cases indicates possible quality issues.
- If rates for benign/borderline cases were as reliable as the rates for malignant cases, it is reasonable to expect the rate ratios between benign/borderline and malignant cases are stable.
- The substantially high correlation between rate ratio and rates for benign/borderline tumors suggests incomplete data in registries with low rate ratios.
Benign/Borderline vs. Malignant

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Benign/Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Surgery Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>72182</td>
<td>51.0%</td>
</tr>
<tr>
<td>No Surgery</td>
<td>63393</td>
<td>44.8%</td>
</tr>
<tr>
<td>Unknown</td>
<td>5839</td>
<td>4.1%</td>
</tr>
<tr>
<td>Diagnostic Confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopical</td>
<td>80367</td>
<td>56.8%</td>
</tr>
<tr>
<td>Radiography</td>
<td>56477</td>
<td>39.9%</td>
</tr>
<tr>
<td>Lab/Visualization/clinic</td>
<td>1635</td>
<td>1.2%</td>
</tr>
<tr>
<td>Unknown</td>
<td>2935</td>
<td>2.1%</td>
</tr>
<tr>
<td>Reporting Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>135662</td>
<td>95.9%</td>
</tr>
<tr>
<td>Radiation</td>
<td>1121</td>
<td>0.8%</td>
</tr>
<tr>
<td>Lab/Office/Nursing</td>
<td>1507</td>
<td>1.1%</td>
</tr>
<tr>
<td>Autopsy/DC</td>
<td>3124</td>
<td>2.2%</td>
</tr>
</tbody>
</table>
Rate Ratio vs. % Surgery in Benign/Borderline

\[\rho = -0.48, \ P < 0.001 \]
Rate Ratio vs. % Microscopically Confirmed in Benign/Borderline

\[\rho = -0.51, P < 0.001 \]
Rate Ratio vs. % Age 65+ Old Population

\[\rho = -0.32, \quad P = 0.025 \]
Rate Ratio vs. % Female Population

\[\rho = -0.33, P = 0.020 \]
Multiple Linear Regression Modeling Rate Ratio

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Full Model</th>
<th>Reduced Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate(SE)</td>
<td>P value</td>
</tr>
<tr>
<td>%Microscopically Confirmed</td>
<td>-0.014 (0.006)</td>
<td>0.030</td>
</tr>
<tr>
<td>%Age 65+</td>
<td>-0.053 (0.032)</td>
<td>0.099</td>
</tr>
<tr>
<td>%Surgery</td>
<td>-0.005 (0.007)</td>
<td>0.489</td>
</tr>
<tr>
<td>%Reporting from Hospital</td>
<td>-0.011 (0.009)</td>
<td>0.289</td>
</tr>
<tr>
<td>%Black</td>
<td>-0.000 (0.005)</td>
<td>0.981</td>
</tr>
<tr>
<td>%Female</td>
<td>-0.094 (0.094)</td>
<td>0.323</td>
</tr>
</tbody>
</table>

\[R^2 = 0.41, \]
\[R^2 \text{ improve to } 0.51 \text{ if dropping Hawaii} \]

% Microscopically Confirmed and % Surgery are interchangeable in the reduced model.
Summary

• Data has improved since year 2004.
• Incomplete data for benign/borderline brain and ONS tumors are likely found in the NAACCR data, especially for the state registries with low rate ratios and low rates for benign/borderline.
• % microscopically confirmed cases and % surgery cases are inversely correlated with the rates for benign/borderline brain and ONS tumors and rate ratios between benign/borderline and malignant brain and ONS tumors.
• % older population is also inversely correlated with the rate ratios between benign/borderline and malignant brain and ONS tumors.
Discussion

• Why data are missing?
 • It is new; registrars are still getting used to the process.
 • Lots cases are diagnosed through imaging.
 • Discharge diagnosis code may not be updated or accurate.

• How much data are missing?
 • Compared to the Colorado registry which has been collecting benign/borderline brain and ONS tumor much longer, some registries may have missed substantial amount of cases.
 • The real amount of missing cases are hard to estimate.

• What can we do to improve the data?
 • Use % microscopically confirmed or % surgery as part of quality check. Higher level of % microscopically confirmed or % surgery indicates possible issues.
 • Higher % of older population with a lower rate is a indication of incomplete data
 • Similar as E-Path, electronic radiology reporting system may improve the data quality
Thank you!

Contact Information: Bin Huang, bhuang@kcr.uky.edu