Collaboration in California: The Prostate Experience

Kyle L. Ziegler, CTR
California Cancer Registry, Institute for Population Health Improvement, UC Davis Health System, Sacramento, CA, United States

Background
In the fall of 2011, the California Cancer Registry (CCR) initiated what would become a three-part plan to evaluate the accuracy of prostate cases in the CCR database. The CCR began this process by performing a mini reliability study focused on prostate cases diagnosed in 2011. This was followed by a second study in 2012 that focused on prostate cases diagnosed in 2012. Finally, in 2013, a third study was performed to evaluate prostate cases diagnosed in 2013. These studies were then presented at an educational event and training was provided focusing on the coding processes that were identified as issues.

Objective
The initial audit purpose was to determine the confidence level of the quality of prostate data in the CCR data base and to determine the educational needs of the registries utilizing the CCR database.

Methodology:

Part I: During the fall of 2011, a mini reliability study was performed. The study was designed to test the coding of specific data variables that has been high on the list of discrepancies and to determine the satisfaction of the study. As a result, participants were able to review the results of the mini-reliability audit with the CCR and to identify the top three discrepancies.

Results:
There was a total of 196 discrepancies noted on the audit. The results of the audit revealed a classification of:

- CS Extension
- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41%. The remaining discrepancies were noted in the following categories:

- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41% of the audit.

Conclusion:
Continued training efforts are needed for the coding of prostate cancer. The results of the study were also used to develop improved training materials and to address the training needs of the registries.

Discharge Distribution by Variable

- CS Extension
- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41% of the audit.

Results:
The demographic of the participants were:

- 50% were from the Los Angeles area
- 40% were from the San Francisco Bay Area
- 10% were from the Central Valley
- 10% were from the Northern California

A presentation was created and presented to registrars in attendance at the Annual CCR Educational meeting in November 2012. There were a total of 120 registrars in attendance. The results of the audit and training were presented to the registrars at the event and a mini-reliability audit was conducted in the course of the event. Training was provided focusing on the coding processes that were identified as issues.

Methodology:
A qualitative project was undertaken to identify the causes of the discrepancies identified in the audit. The project was undertaken in the form of a limited number of coding audits that were conducted and reported to the CCR data base after the audit was completed.

Results:
The audit identified the number of variables that were identified as problematic in the early fall of 2012 and the results were presented to the CCR.

Conclusion:
Continued training efforts are needed for the coding of prostate cases. There were problems identified in the audit that were related to coding processes and to the use of the CCR database. These processes were then used to develop improved training materials and to address the training needs of the registries.

Discharge Distribution by Variable

- CS Extension
- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41% of the audit.

Results:
The demographic of the participants were:

- 50% were from the Los Angeles area
- 40% were from the San Francisco Bay Area
- 10% were from the Central Valley
- 10% were from the Northern California

A presentation was created and presented to registrars in attendance at the Annual CCR Educational meeting in November 2012. There were a total of 120 registrars in attendance. The results of the audit and training were presented to the registrars at the event and a mini-reliability audit was conducted in the course of the event. Training was provided focusing on the coding processes that were identified as issues.

Methodology:
A qualitative project was undertaken to identify the causes of the discrepancies identified in the audit. The project was undertaken in the form of a limited number of coding audits that were conducted and reported to the CCR data base after the audit was completed.

Results:
The audit identified the number of variables that were identified as problematic in the early fall of 2012 and the results were presented to the CCR.

Conclusion:
Continued training efforts are needed for the coding of prostate cases. There were problems identified in the audit that were related to coding processes and to the use of the CCR database. These processes were then used to develop improved training materials and to address the training needs of the registries.

Discharge Distribution by Variable

- CS Extension
- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41% of the audit.

Results:
The demographic of the participants were:

- 50% were from the Los Angeles area
- 40% were from the San Francisco Bay Area
- 10% were from the Central Valley
- 10% were from the Northern California

A presentation was created and presented to registrars in attendance at the Annual CCR Educational meeting in November 2012. There were a total of 120 registrars in attendance. The results of the audit and training were presented to the registrars at the event and a mini-reliability audit was conducted in the course of the event. Training was provided focusing on the coding processes that were identified as issues.

Methodology:
A qualitative project was undertaken to identify the causes of the discrepancies identified in the audit. The project was undertaken in the form of a limited number of coding audits that were conducted and reported to the CCR data base after the audit was completed.

Results:
The audit identified the number of variables that were identified as problematic in the early fall of 2012 and the results were presented to the CCR.

Conclusion:
Continued training efforts are needed for the coding of prostate cases. There were problems identified in the audit that were related to coding processes and to the use of the CCR database. These processes were then used to develop improved training materials and to address the training needs of the registries.

Discharge Distribution by Variable

- CS Extension
- CS Site Specific Factor (Number of Cases Examined)
- CS Site Specific Factor (Stool's Ternary Pattern)

The data variable that had the top three discrepancies was the CS Extension which had 33 discrepancies. The next major discrepancy was the CS Site Specific Factor which had 31 discrepancies. The final major discrepancy was the CS Site Specific Factor which had 26 discrepancies. These three discrepancies totaled 80 discrepancies or 41% of the audit.

Results:
The demographic of the participants were:

- 50% were from the Los Angeles area
- 40% were from the San Francisco Bay Area
- 10% were from the Central Valley
- 10% were from the Northern California

A presentation was created and presented to registrars in attendance at the Annual CCR Educational meeting in November 2012. There were a total of 120 registrars in attendance. The results of the audit and training were presented to the registrars at the event and a mini-reliability audit was conducted in the course of the event. Training was provided focusing on the coding processes that were identified as issues.

Methodology:
A qualitative project was undertaken to identify the causes of the discrepancies identified in the audit. The project was undertaken in the form of a limited number of coding audits that were conducted and reported to the CCR data base after the audit was completed.

Results:
The audit identified the number of variables that were identified as problematic in the early fall of 2012 and the results were presented to the CCR.

Conclusion:
Continued training efforts are needed for the coding of prostate cases. There were problems identified in the audit that were related to coding processes and to the use of the CCR database. These processes were then used to develop improved training materials and to address the training needs of the registries.