Discuss the implications of alternative molecular biologic tumorigenesis pathways on cancer surveillance.

- Discuss colorectal cancers as an example of tumors that evolve via different pathways with genomic and epigenetic changes in DNA methylation.
- Discuss the clinical implications of the different pathways of origin.
- Reassess the types of data that cancer registries should collect in the future.

Theories of carcinogenesis

Somatic Mutation Theory (SMT)
- **Cancer**: A single cell that accumulates DNA mutations and proliferates out of control.
- **Gene**: Gene in the default state of cells.
- **Principles**:
 - Mutations necessary and sufﬁcient for cancer to occur.
 - Cancer can arise from any cell in the body.
 - Changes in the tissue environment predispose to cell transformation.
- **Genetic instability**: A byproduct of carcinogenesis.

Tissue Organization Field Theory (TOFT)
-**Conventional**: Development gone awry.
- **Developmental field**: Problem of tissue organization and intercellular signaling.
- **Progenitor cell**: Developmental field of all normal cells of the body.
- **Principles**:
 - Mutations are not needed.
 - Cancer can arise normally from the location of an exposure.
 - Changes in the tissue environment predispose to cell transformation.
- **Genetic instability**: A byproduct of carcinogenesis.

Colorectal cancer: Example of a tumor with 'epi-genetic' changes in a causal pathway

- Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States, with an overall lifetime risk of about 1 in 20 (5%).
- Recent studies have identified several molecular subtypes of colorectal cancer that differ based on their biologic pathway of origin.
- DNA alterations involving both genetic (e.g., mutations) and epigenetic (e.g., methylated loci) are involved in differentiating the subtypes of colorectal cancer.
- The prevalence and type of these DNA alterations vary by smoking status.

NH State Cancer Registry Data

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Methylation level (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNF39</td>
<td>0.2</td>
</tr>
<tr>
<td>CUGBP2</td>
<td>0.4</td>
</tr>
<tr>
<td>MECoM</td>
<td>0.6</td>
</tr>
<tr>
<td>IR886</td>
<td>0.8</td>
</tr>
<tr>
<td>RASSF1</td>
<td>1.0</td>
</tr>
<tr>
<td>PLEKHA6</td>
<td>0.8</td>
</tr>
<tr>
<td>FRMD4A</td>
<td>1.0</td>
</tr>
<tr>
<td>NCRNA00181</td>
<td>0.0</td>
</tr>
<tr>
<td>ADAMTS16</td>
<td>0.2</td>
</tr>
<tr>
<td>BIN2</td>
<td>0.4</td>
</tr>
<tr>
<td>C16orf54</td>
<td>0.2</td>
</tr>
<tr>
<td>ZSCAN18</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Several pathways to colorectal cancer

- The NH State cancer registry data above show that smokers are more likely to have KRAS "normal" tumors.
- This suggests that the cancer in these smokers did NOT arise via the "Conventional Pathway" (blue) or the "Alternative Pathway" (yellow), as both have KRAS mutations as an early event.
- In fact, smokers are more likely to have cancers arising via the "Somatic Serrated Pathway" (red) as a molecular mechanism.

Types of DNA alterations

- The carcinogenesis pathways shown involve DNA alterations that include specific:
 - mutations (changes to the DNA sequence)
 - epigenetic changes (e.g. attachment of methyl groups to the DNA)

Clinical utility

- **Cancer prevention**: We can identify molecular "fingerprints" of exposure to tumor to reconstruct causal exposure. E.g. Smoking causes tumors to arise via the sessile serrated pathway.

Methylation level by smoking status:

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Never (n=200)</th>
<th>Current (n=100)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>0.00</td>
<td>0.20</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Clinical study

- **Study group**: Colorectal cancer NH State Cancer Registry patients diagnosed with colorectal cancer 2011–2014 via ICD-O, the registry-initiated collection of smoking history and KRAS mutation status.
- **Cox polyps**: Pathology slides from patients diagnosed with hyperplastic polyps (HP), and/or sessile serrated polyps (SSA/Ps) between 2006 and 2009 (n=460) were reviewed to select phases for the study from the New Hampshire Colonoscopy Registry (NCHR).
- **Total of 42 sessile serrated polyps (SSA/P) in this analysis**.

Methods

- **Array-based DNA methylation**:
 - Single-base-wide DNA methylation of 460,790 CpG loci was assessed using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA).

Acknowledgements

This project was supported in part by the Centers for Disease Control and Prevention’s National Program of Cancer Registries, cooperative agreement no. 5U48 DP001962-04 (1U48DP001962-04). This effort was also supported by the National Cancer Institute (CA148295-05, CA212346-06), and the National Institute on Aging (1R21AG055009-01). Support was also provided by the NH Colonoscopy Registry (NCHR). The authors acknowledge the National Cancer Institute (CA148295-05, CA212346-06), and the National Institute on Aging (1R21AG055009-01). This is a preprint.