STANDARDIZATION FOR REPORTING CANCER BIOMARKER TEST DATA

Sandy Jones
Public Health Advisor
CDC Cancer Surveillance Branch

2014 NAACCR Annual Conference
June 24, 2014
Challenges with Reporting Biomarker Data

- Lack of standardization (inconsistent terminologies, test names, etc. used across laboratories)
- Differences in what is included in the reports (genes tested, probes used, qualitative data, quantitative data, etc.)
- Variation among College of American Pathologist (CAP) Cancer Protocols regarding tumor markers
- Time delay between diagnosis and molecular test results
- Difficulties in aggregating and analyzing data due to
 - Disparate reporting practices
 - Lack of structured data
Comparison of Hormone Receptor Test Results from 4 National Laboratories

<table>
<thead>
<tr>
<th>Lab</th>
<th>% staining reported</th>
<th>Scoring criteria</th>
<th>Fixative and fixation time reported</th>
<th>Clone reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yes</td>
<td>>4% Positive</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-4% Weakly positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><1% Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>≥1% Positive</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1% Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Yes</td>
<td>≥1% Positive</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1% Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Yes</td>
<td>≥1% “Favorable”</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1% “Unfavorable”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JAK2 Tests provided by Laboratory A

Search For Tests

[By Keyword] [By Condition]

JAK2

Your Search: Search Terms: "JAK2*"

Found: 7 Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>489230</td>
<td>JAK2 V617F Mutation Analysis, Qualitative, With Reflex to JAK2 Exon 12 Mutation Analysis</td>
</tr>
<tr>
<td>489200</td>
<td>JAK2 V617F Mutation Analysis, Qualitative</td>
</tr>
<tr>
<td>489212</td>
<td>JAK2 Exon 12 Mutation Analysis</td>
</tr>
<tr>
<td>489470</td>
<td>JAK2 V617F Mutation Analysis, Quantitative</td>
</tr>
<tr>
<td>150330</td>
<td>CML FISH Reflex to Qualitative JAK2 V617F Mutation Analysis</td>
</tr>
<tr>
<td>150340</td>
<td>CML FISH Reflex to Qualitative JAK2 V617F Reflex to JAK2 Exon 12 Mutation Analysis</td>
</tr>
<tr>
<td>489150</td>
<td>MPL Mutation Analysis</td>
</tr>
</tbody>
</table>

Displaying results 1 - 7 of 7
JAK2 Tests provided by Laboratory B

- JAK2 V617F Mutation Analysis
- JAK2 Exon 12-14 Mutation Analysis
Multiple LOINC Codes for JAK2 Test

<table>
<thead>
<tr>
<th>Score</th>
<th>LOINC</th>
<th>Component</th>
<th>Property</th>
<th>Timing</th>
<th>System</th>
<th>Scale</th>
<th>Method</th>
<th>exUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.29</td>
<td>53761-3</td>
<td>JAK2 gene.p.V617F mutanthonormal</td>
<td>RelRto</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Qn</td>
<td>Molgen</td>
<td>%</td>
</tr>
<tr>
<td>28.81</td>
<td>55300-8</td>
<td>JAK2 gene exon 12 mutations</td>
<td>Prid</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Nar</td>
<td>Molgen</td>
<td></td>
</tr>
<tr>
<td>28.81</td>
<td>63421-2</td>
<td>JAK2 gene exon 12 mutations tested for</td>
<td>Prid</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Nom</td>
<td>Molgen</td>
<td></td>
</tr>
<tr>
<td>28.81</td>
<td>55301-6</td>
<td>JAK2 gene exon 13 mutations</td>
<td>Prid</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Nar</td>
<td>Molgen</td>
<td></td>
</tr>
<tr>
<td>28.81</td>
<td>43399-5</td>
<td>JAK2 gene.p.V617F</td>
<td>Arb</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Ord</td>
<td>Molgen</td>
<td></td>
</tr>
<tr>
<td>24.95</td>
<td>48726-4</td>
<td>JAK2 gene mutation analysis</td>
<td>Prid</td>
<td>Pt</td>
<td>Bld/Tiss</td>
<td>Nar</td>
<td>Molgen</td>
<td></td>
</tr>
</tbody>
</table>

Search generated 6 hits in 0.006 secs.
College of American Pathologists (CAP) Cancer Biomarker Reporting Committee

- CAP awarded a Centers for Disease Control and Prevention (CDC) grant to assist with:
 - Coordinating expert panels
 - Identifying and/or developing standardized terminology for cancer biomarker data
 - Developing a standardized transmission format for reporting cancer biomarker data to state cancer registries
 - Implementing a pilot with a national lab as a proof of concept

- Charge: Develop stand-alone reporting templates for cancer biomarkers (predictive and prognostic) that would replace the “Ancillary Studies” section of the CAP Cancer Protocols
Biomarker Template Development

- Form expert panel
- Review evidence and current recommendations (e.g. ASCO, NCCN)
- Draft standardized, structured report templates modeled after the College of American Pathologists (CAP) Cancer Protocols
 - Report template to include results and methods
 - Explanatory Notes
- Expert review
- Open public comment period
- Publish and maintain
Cancer Biomarker Expert Panel Representation

- College of American Pathologists
- North American Association of Central Cancer Registries
- Association of Molecular Pathology
- Centers for Disease Control and Prevention
- American Society of Clinical Oncology
- National Comprehensive Cancer Network
- Cancer Care Ontario, Canada
- American Joint Committee on Cancer
- National Cancer Registrars Association
Goals of Cancer Biomarker Reporting Committee

- Standardize terminology and report elements
- More efficient template update
- Facilitate electronic transmission of structured data using a standardized transmission format
 - Improve data aggregation and analysis
Status of Template Development

- Four templates have been developed and published on the College of American Pathologists (CAP) website:
Cancer Biomarker Templates

Template for Reporting Results of Biomarker Testing of Specimens From Patients With Carcinoma of the Breast

Template web posting date: December 2013

Authors
Patrick L. Fitzgibbons, MD, FCAP
Department of Pathology, St. Jude Medical Center, Fullerton, CA
Deborah A. Dillon, MD
Department of Pathology, Brigham and Women's Hospital, Boston, MA
Randa Alsabeh, MD, FCAP
Department of Pathology, Kaiser Permanente - Los Angeles Medical Center, Los Angeles, CA
Michael A. Berman, MD, FCAP
Department of Pathology, Jefferson Hospital, Jefferson Hills, PA
Daniel F. Hayes, MD
University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
David G. Hicks, MD, FCAP
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
Kevin S. Hughes, MD, FACS
Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA
Sharon Nofech-Mozes, MD
Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto ON

For the Members of the Cancer Biomarker Working Group, College of American Pathologists
RESULTS

+ **EGFR Mutational Analysis (Note B)**
 + ___ No mutation detected (wild-type EGFR allele)
 + ___ Mutation identified (select all that apply)
 + ___ Exon 18 Gly719#
 + ___ Exon 19 deletion#
 + ___ Exon 20 insertion##
 + ___ Exon 20 Thr790Met###
 + ___ Exon 21 Leu858Arg#
 + ___ Other (specify)####:________________________
 + ___ Cannot be determined (explain):________________________

* This EGFR activation mutation is associated with response to EGFR tyrosine kinase inhibitors.

This form of EGFR activating mutation is generally associated with resistance to EGFR tyrosine kinase inhibitors although insertions at or before position 768 can be associated with sensitivity.

This mutation is typically secondary to other EGFR activating mutations and is associated with acquired resistance to tyrosine kinase inhibitor therapy. If seen in untreated/pretreated patients, may be present in the germline and indicate a hereditary cancer syndrome, in which case genetic counseling is suggested.

There is limited data on response to EGFR tyrosine kinase inhibitors for many of the uncommon EGFR activating mutations.
Lung Biomarker Template
Methods Section

+ METHODS

+ EGFR Exons Assessed (select all that apply)
 + [] 18
 + [] 19
 + [] 20
 + [] 21

+ EGFR Mutational Analysis Testing Method (select all that apply)
 + [] Direct (Sanger) sequencing
 + [] Pyrosequencing
 + [] High-resolution melting analysis
 + [] Polymerase chain reaction (PCR), allele-specific hybridization
 + [] Real-time PCR
 + [] Next-generation (high-throughput) sequencing
 + [] Other (specify): __________________________

Note: Please specify in Comments section if different testing methods were used for different exons.
Electronic Reporting of Biomarker Templates

- All paper templates will be converted into electronic, computer-readable format to be incorporated into laboratory information systems that will result in the capture of structured data with minimal textual data.

- College of American Pathologists (CAP) electronic Cancer Checklists (eCCs) will include biomarker reporting templates.
Issues with Templates

- Length of paper templates
- Maintenance (frequency of updates)
- Rapidly changing environment that will require development of new templates for new tests
- Harmonization across templates
- Differences between solid and hematolymphoid neoplasms
Challenges with Reporting Biomarker Data

- One standardized terminology needed for reporting biomarker data (paper and electronic versions)

- Laboratories need to be able to map appropriate reference terminologies for cancer registries
 - LOINC codes exist for some tests but not all
 - Multiple LOINC codes exist for similar tests
 - No LOINC/SNOMED codes exist for results from cancer biomarker tests
Challenges with Reporting Biomarker Data

- Different report outputs
 - EGFR T790M mutation
 - EGFR Exon 20 Thr790Met Human Readable
 - NM_005228.3: c.2369C>T HGVS name*
 - Chr.7 55249071 Genome location

Nomenclature of Human Genome Variation Society
Current Activities

- Work with Regenstrief Institute to extend the existing LOINC model to accommodate reporting of biomarker test names and results
- Work with Integrating the Healthcare Enterprise (IHE) and a national lab to implement and test the College of American Pathologists (CAP) electronic Cancer Checklist (eCC) and biomarker reporting templates ~ to show proof of concept
 - Health Information and Management Systems Society (HIMSS) Conference
 - American Society of Clinical Oncologist (ASCO) Annual Meeting
- Map CAP biomarker reporting template data elements to NAACCR Volume V Standard for Electronic Pathology
Thank you!

Sandy Jones, CDC
Public Health Advisor
770-488-5689
sft1@cdc.gov

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.