Model selection and explained variation of survival from cancer

Camille Maringe, Laura Woods, Janez Stare, Bernard Rachet*
CRUK Cancer Survival Group
London School of Hygiene and Tropical Medicine

Background and aims

• Model selection for estimation of cancer survival
 • Akaike Information Criterion (AIC)

• Model selection for prediction of cancer survival
 ➢ Ideas:
 • AIC-based measures of goodness of fit
 • Measures of explained variation
AIC-based measures of Goodness of Fit

- To help detect likely form of the predictors
- To investigate model-averaging

- AIC & AIC-derived measures: overall and by age group
 - AIC-differences: \(d_i = \text{AIC}_i - \min_{j=1:N}(\text{AIC}_j) \)
 - Model likelihood: \(l_i = \exp(-d_i/2) \)
 - AIC weights: \(w_i = l_i/\sum_{j=1:N}(l_j) \)

 \(i \) – model in consideration

 \(N \) – total number of models considered

A measure of explained variation: \(R_E \)

- \(R_E \)
 - Stands for “Ranks Explained”
 - Non-parametric
 - Model-free interpretation
 - Well-understood scale: \([-1; +1]\)
 - Consistent with independent censoring mechanisms

 ➢ To be adapted to the net survival context
RE in the overall survival context

\[R_E = \frac{\sum_i (r_{i,\text{null}} - r_{i,\text{model}})}{\sum_i (r_{i,\text{null}} - r_{i,\text{perfect}})} \]

Summation over all observations that fail

i: time at which the \(i^{th}\) observation fails

\(r_{i,\text{null}}\): rank of observation \(i\) under the null model

\(\rightarrow\) all observations in risk set have equal chances to fail at time \(t_i\)

\(r_{i,\text{perfect}}\): rank of observation \(i\) under the perfect model

\(\rightarrow\) observation \(i\) is given rank 1

RE in the net survival context

\[R_E = \frac{\sum_i (r_{i,\text{LT}} - r_{i,\text{model}})}{\sum_i (r_{i,\text{LT}} - r_{i,\text{perfect}})} \]

Summation over all observations that fail

i: time at which the \(i^{th}\) observation fails

\(r_{i,\text{LT}}\): rank of observation \(i\) by the life tables

\(\rightarrow\) all observations in risk set have unequal chances to fail at time \(i\)

\(r_{i,\text{perfect}}\): rank of observation \(i\) under the perfect model

\(\rightarrow\) observation \(i\) is given rank 1
Test of R_E in the net survival context

- Simulated datasets
 - 2000 colon cancer patients
 - Age at diagnosis 15-99 years (mean age 70)
 - Distribution of stage at diagnosis
 - 13% - stage I
 - 40% - stage II
 - 27% - stage III
 - 20% - stage IV

- Scenarios: varying effects of age and stage at diagnosis on cancer-survival
 - Time-fixed vs. time-varying
 - Linear vs. non-linear

- 100 datasets per scenario

Results: R_E in the net survival context

7 years of follow-up

![Simulation: LaNLS, 7 years of F-up. Re measured at 5 years](#)
Results: R_E in the net survival context

15 years of follow-up

Censoring

Simulation: LaNLs, 15 years of F-up
Re measured at 10 years

Simulation: LaNLs, 7 years of F-up
Re measured at 5 years
Results: R_E in the net survival context

Time-varying effect

Simulation: LaNLs, 7 years of Fup

Discussion

- R_E not sensitive to models which do not affect the rank order
- Informative null model
 - Pros: reflect the nature of net survival model
 - Cons:
 - values never high (survival issue)
 - values for R_E can go beyond -1
- Local R_E: tool for understanding time-varying impact of risk factors on cancer survival
- Additional potential predictors
 - Future
 - Model-averaging
 - Frailty model