REPORTING DELAY ADJUSTMENT ACROSS NAACCR REGISTRIES

Huann-Sheng Chen, Ph.D., Mathematical Statistician, NCI

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Cross-Organization Delay Model Team Surveillance Research Program, NCI & IMS

NCI: Rocky Feuer, Huann-Sheng Chen, Doug Midthune **IMS:** Martin Krapcho, Joe Zou, Steve Scoppa, Andy Lake, Danny Miller

NPCR, Division of Cancer Prevention and Control, CDC CDC: Reda Wilson, Trevor Thompson, Jessica King CDC Contractors: Kevin Zhang, Xing Dong

Delay Model Sub-Committee, NAACCR

Kevin Ward, Tom Tucker, Ron Dewar, Brenda Edwards, Frank Boscoe, Betsy Kohler

- Registries report cases approximately 2 years after the end of specific diagnosis year.
- Cases are updates (added or deleted) in subsequent submissions

					Subi	mission	year				
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1997	32,741	33,460	33,793	33,958	33,917	33,968	33,881	33,914	33,941	33,955	33,965
1998		33,186	34,107	34,524	34,474	34,565	34,512	34,596	34,622	34,626	34,654
1999			34,061	34,978	35,071	35,234	35,202	35,279	35,317	35,315	35,329
2000				34,090	34,606	35,049	35,065	35,104	35,148	35,161	35,183
2001					34,640	35,293	35,758	35,845	35,952	35,976	36,003
2002						35,233	35,611	35,751	35,870	35,908	35,949
2003							34,899	35,214	35,382	35,442	35,499
2004								36,033	36,348	36,463	36,528
2005									35,670	36,095	36,226
2006										34,845	35,288
2007											36,503

					Subi	mission	year				
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1997	32,741	33,460	33,793	33,958	33,917	33,968	33,881	33,914	33,941	33,955	33,965
1998		33,186	34,107	34,524	34,474	34,565	34,512	34,596	34,622	34,626	34,654
1999			34,061	34,978	35,071	35,234	35,202	35,279	35,317	35,315	35,329
2000				34,090	34,606	35,049	35,065	35,104	35,148	35,161	35,183
2001					34,640	35,293	35,758	35,845	35,952	35,976	36,003
2002						35,233	35,611	35,751	35,870	35,908	35,949
2003							34,899	35,214	35,382	35,442	35,499
2004								36,033	36,348	36,463	36,528
2005									35,670	36,095	36,226
2006										34,845	35,288
2007											36,503

					Subi	mission	year				
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1997	32,741	33,460	33,793	33,958	33,917	33,968	33,881	33,914	33,941	33,955	33,965
1998		33,186	34,107	34,524	34,474	34,565	34,512	34,596	34,622	34,626	34,654
1999			34,061	34,978	35,071	35,234	35,202	35,279	35,317	35,315	35,329
2000				34,090	34,606	35,049	35,065	35,104	35,148	35,161	35,183
2001					34,640	35,293	35,758	35,845	35,952	35,976	36,003
2002						35,233	35,611	35,751	35,870	35,908	35,949
2003							34,899	35,214	35,382	35,442	35,499
2004								36,033	36,348	36,463	36,528
2005									35,670	36,095	36,226
2006										34,845	35,288
2007											36,503

- Even though delay adjustment factors are relatively small, the bias is largest for the most recent data points
 - Any small change in the recent rates is seen as a potential harbinger of the impact of cancer control activities
- Delay modeling is used to correct for underreporting of the most recent years
 - By predicting case counts after a fixed number of years

				Su	ıbm	issio	on \	<u>rear</u>			
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1997	2	3	4	5	6	7	8	9	10	11	12
1998		2	3	4	5	6	7	8	9	10	11
1999			2	3	4	5	6	7	8	9	10
2000				2	3	4	5	6	7	8	9
2001					2	3	4	5	6	7	8
2002						2	3	4	5	6	7
2003							2	3	4	5	6
2004								2	3	4	5
2004									2	3	Д
2005									2	2	2
2006										2	5
2007											2

Dark Green – Used to Produce Trends In Observed Rates

				Sι	ıbm	issi	on \	<u>/ear</u>			
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1997	2	3	4	5	6	7	8	9	10	11	12
1998		2	3	4	5	6	7	8	9	10	11
1999			2	3	4	5	6	7	8	9	10
2000				2	3	4	5	6	7	8	9
2001					2	3	4	5	6	7	8
2002						2	3	4	5	6	7
2003							2	3	4	5	6
2004								2	3	4	5
2005									2	3	4
2006										2	3
2007											2

Purpose of Delay Modeling: Use the Data in Green to Project to the Yellow

				S	ubr	nissi	<mark>on</mark> '	Year													
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009										
1997	2	3	4	5	6	7	8	9	10	11	12										
1998		2	3	4	5	6	7	8	9	10	11	12									
1999			2	3	4	5	6	7	8	9	10	11	12								
2000				2	3	4	5	6	7	8	9	10	11	12							
2001					2	3	4	5	6	7	8	9	10	11	12						
2002						2	3	4	5	6	7	8	9	10	11	12					
2003							2	3	4	5	6	7	8	9	10	11	12				
2004								2	3	4	5	6	7	8	9	10	11	12			
2005									2	3	4	5	6	7	8	9	10	11	12		
2006										2	3	4	5	6	7	8	9	10	11	12	
2007											2	3	4	5	6	7	8	9	10	11	12

Purple – Used to Produce Trends in Delay Adjusted Rates

				S	ubn	nissi	on	Year													
Diagnosis Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009										
1997	2	3	4	5	6	7	8	9	10	11	12										
1998		2	3	4	5	6	7	8	9	10	11	12									
1000			2	ર	Д	5	6	7	8	9	10	11	12								
1999			~	י ר ר	т Э	<u>у</u>	с г	,	7	0	-10	10	11	10							
2000				2	3	4	5	0	/	ð	9	10	11	12							
2001					2	3	4	5	6	7	8	9	10	11	12						
2002						2	3	4	5	6	7	8	9	10	11	12					
2003							2	3	4	5	6	7	8	9	10	11	12				
2004								2	3	4	5	6	7	8	9	10	11	12			
2004								_	י ר	ว	1	Г	C	7	0		10	11	10		
2005									2	3	4	5	6	/	ð	9	10	TT	12		
2006										2	3	4	5	6	7	8	9	10	11	12	
2007											2	3	4	5	6	7	8	9	10	11	12

- Since 2003 delay adjustment factors have been estimated for SEER 9 and SEER 13
 - Only reported for combination of gender (male, female) and races (all races, white, and black) for aggregation of registries in SEER 9 and SEER 13.

Cancer trends for SEER reported in Cancer Statistics Review

SEER Observed Incidence, SEER Delay Adjusted Incidence and US Death Rates^a Cancer of the Prostate, by Race

^a Source: SEER 9 areas and US Mortality Files (National Center for Health Statistics, CDC). Rates are age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103). Regression lines and APCs are calculated using the Joinpoint Regression Program Version 3.5, April 2011, National Cancer Institute. The APC is the Annual Percent Change for the regression line segments. The APC shown on the graph is for the most recent trend.

^{*} The APC is significantly different from zero (p < 0.05).

- Starting in 2015, for the first time, a joint effort by NCI, CDC, and the NAACCR was mounted to develop a unified approach for estimating and reporting delay-adjusted rates across all of the US and Canada
- In the future we want to facilitate delay adjustment for single registries or any combination of registries

of Registries Considered for Delay Adjustment

Total:

➢ 57 US registries

- 4 states are divided into 9 sub-state registries
- 46 state registries
- District of Columbia
- Puerto Rico
- > 13 Canadian Registries

1. Delay adjustment factors should be adjusted to the same starting point for all registries

- SEER 9 is adjusted back to the 1983 submission but it is not possible to adjust NAACCR registries that far back
- Common starting point for many NAACCR registries is the 1999 submission (1997 diagnosis year)
 - Up to 17 years of reporting delay using the 2014 submission

- 2. Produce delay factors (and standard errors) for every (or almost every) U.S. and Canadian registry
 - We would like NAACCR, NPCR, and SEER to use delay factors derived from a common set of models
 - Estimate delay factors by cancer site and registry as a function of diagnosis year, age group, race, and gender

Three Overall Goals (continued)

3. These factors should easily be "combinable" across any combination of the factors (cancer site, diagnosis year, registry, age group, race, and gender) so that the analyst can obtain delay adjusted incidence rates for any selected sub-group

Implementation: All registries use a single derived set of factors

- 2015 release using Dec. 2014 NAACCR submission to develop factors
 - Developed at the registry level, but released with only aggregate identifiers (SEER9, SEER13, SEER18, US, Canada)
- 2016 release using Dec. 2015 NAACCR submission to develop factors
 - Developed at the registry level
 - Being used in Annual Report to the Nation
 - All race registry specific delay-adjusted rates included in CINA publication
 - SEER research data released with aggregated identifiers
 - SEER custom data available with registry identifiers

Overview of Major 2016 Changes

- Use data only from the 2004 submission/2002 diagnosis year rather than the 1999 submission/1997 diagnosis year
- A new (improved) statistical model with age, gender, and race effects

								F	Reporting Ye	ar							
Diagnosi																	2015
s Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	
1997	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1998		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1999			2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2000				2	3	4	5	6	7	8	9	10	11	12	13	14	15
2000				_	2	3	1	5	6	7	8	9	10	11	12	13	14
2001					2	2	2	4	F	6	7	0	0	10	11	12	10
2002						2	5	4	5	0	/	0	9	10	11	12	15
2003							2	3	4	5	6	7	8	9	10	11	12
2004								2	3	4	5	6	7	8	9	10	11
2005									2	3	4	5	6	7	8	9	10
2006										2	3	4	5	6	7	8	9
2007											2	3	4	5	6	7	8
2009												2	3	Л	5	6	7
2008												-	2	2	3	с Г	, ,
2009													2	5	4	5	0
2010														2	3	4	5
2011															2	3	4
2012																2	3
2013																	2

- Early years are eliminated which tend to have longer reporting delays and more missing and aberrant data
- Little loss since delay times greater than 11 yielded few additional cases

Why a new statistical model?

Old model: Unstable for some registries

- Based on survival (cumulative distribution) type of modeling which is more sensitive to aberrant data
- Old model had a gender and age effect, but all the factors for races were equal

> New model:

- Based on a simpler form of model using individual ratios in multivariate regression
- More stable, and so more individual registries can be included
 - From Dec. 2014 submission: 13 U.S and 6 Canadian registries excluded
 - From Dec. 2015 submission: 5 U.S. and 6 Canadian registries excluded

How does the new model work?

Ratios of delay time 3 and 2 $r_{3/2} = y_{d=3}/y_{d=2}$

Diagnosi s Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
2002	2	3	4	5	6	7	8	9	10	11	12	13
2003		2	3	4	5	6	7	8	9	10	11	12
2004			2	3	4	5	6	7	8	9	10	11
2005				2	3	4	5	6	7	8	9	10
2006					2	3	4	5	6	7	8	9
2007						2	3	4	5	6	7	8
2008							2	3	4	5	6	7
2009								2	3	4	5	6
2010									2	3	4	5
2011										2	3	4
2012											2	3
2013												2

Ratios of delay time 4 and 3 $r_{4/3} = y_{d=4}/y_{d=3}$

Diagnosis Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
2002	2	3	4	5	6	7	8	9	10	11	12	13
2003		2	3	4	5	6	7	8	9	10	11	12
2004			2	3	4	5	6	7	8	9	10	11
2005				2	3	4	5	6	7	8	9	10
2006					2	3	4	5	6	7	8	9
2007						2	3	4	5	6	7	8
2008							2	3	4	5	6	7
2009								2	3	4	5	6
2010									2	3	4	5
2011										2	3	4
2012											2	3
												2

Ratios of delay time 5 and 4 $r_{5/4} = y_{d=5}/y_{d=4}$

Diagnosi s Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
2002	2	3	4	5	6	7	8	9	10	11	12	13
2003		2	3	4	5	6	7	8	9	10	11	12
2004			2	3	4	5	6	7	8	9	10	11
2005				2	3	4	5	6	7	8	9	10
2006					2	3	4	5	6	7	8	9
2007						2	3	4	5	6	7	8
2008							2	3	4	5	6	7
2009								2	3	4	5	6
2010									2	3	4	5
2011										2	3	4
2012											2	3
2013												2

Ratios of delay time >5 $r_{i} = \frac{y_{d=i}}{y_{d=i-1}}, i = 5, 6, ..., 11$

Diagnosi s Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
2002	2	3	Л	5	6	7	Q	Q	10	11		
2002	2	5				,			10	11		
2003		2	3	4	5	6	/	8	9	10	11	
2004			2	3	4	5	6	7	8	9	10	11
2005				2	3	4	5	6	7	8	9	10
2006					2	2	Л	Ę	6	7	Q	٥
2006					2	5	4	5	0	,	0	9
2007						2	3	4	5	6	7	8
2008							2	3	4	5	6	7
2009								2	3	4	5	6
2010									2	3	4	5
2011										2	3	4
2012											2	3
2013												2

Four dependent variables

				r_{5+}					
Diagnosis Year	$r_{3/2}$	$r_{4/3}$	$r_{5/4}$	$r_{6/5}$	$r_{7/6}$	$r_{8/7}$	$r_{9/8}$	$r_{10/9}$	$r_{11/10}$
	y ₂₀₀₅ /	У ₂₀₀₆ /	y ₂₀₀₇ /	y ₂₀₀₈ /	y ₂₀₀₉ /	y ₂₀₁₀ /	y ₂₀₁₁ /	y ₂₀₁₂ /	y ₂₀₁₃ /
2002	<i>Y</i> 2004	y_{2005}	y_{2006}	<i>Y</i> ₂₀₀₇	y_{2008}	y_{2009}	y_{2010}	y_{2011}	y_{2012}
	y ₂₀₀₆ /	y ₂₀₀₇ /	y ₂₀₀₈ /	y ₂₀₀₉ /	y ₂₀₁₀ /	y ₂₀₁₁ /	y ₂₀₁₂ /	y ₂₀₁₃ /	y ₂₀₁₄ /
2003	<i>Y</i> 2005	<i>Y</i> 2006	y_{2007}	y_{2008}	<i>Y</i> 2009	y_{2010}	y_{2011}	y_{2012}	y_{2013}
	y ₂₀₀₇ /	y ₂₀₀₈ /	y ₂₀₀₉ /	y ₂₀₁₀ /	y ₂₀₁₁ /	y ₂₀₁₂ /	y ₂₀₁₃ /	y ₂₀₁₄ /	y ₂₀₁₅ /
2004	Y 2006	<i>Y</i> 2007	y_{2008}	y_{2009}	<i>Y</i> 2010	<i>y</i> ₂₀₁₁	<i>y</i> ₂₀₁₂	<i>Y</i> ₂₀₁₃	y_{2014}
	y ₂₀₀₈ /	y ₂₀₀₉ /	y ₂₀₁₀ /	<i>y</i> ₂₀₁₁ /	y ₂₀₁₂ /	y ₂₀₁₃ /	y ₂₀₁₄ /	y ₂₀₁₅ /	
2005	<i>У</i> 2007	Y 2008	\mathcal{Y}_{2009}	<i>Y</i> 2010	<i>Y</i> 2011	<i>Y</i> 2012	<i>Y</i> 2013	<i>Y</i> 2014	
	y ₂₀₀₉ /	<i>y</i> ₂₀₁₀ /	<i>y</i> ₂₀₁₁ /	y ₂₀₁₂ /	<i>y</i> ₂₀₁₃ /	<i>y</i> ₂₀₁₄ /	y ₂₀₁₅ /		
2006	<i>У</i> 2008	<i>У</i> 2009	y_{2010}	<i>y</i> ₂₀₁₁	<i>Y</i> ₂₀₁₂	<i>Y</i> ₂₀₁₃	y_{2014}		
	y ₂₀₁₀ /	<i>y</i> ₂₀₁₁ /	y ₂₀₁₂ /	y ₂₀₁₃ /	<i>y</i> ₂₀₁₄ /	y ₂₀₁₅ /			
2007	<i>У</i> 2009	<i>У</i> 2010	y_{2011}	<i>Y</i> ₂₀₁₂	<i>Y</i> ₂₀₁₃	y_{2014}			
	<i>y</i> ₂₀₁₁ /	<i>y</i> ₂₀₁₂ /	y ₂₀₁₃ /	<i>y</i> ₂₀₁₄ /	<i>y</i> ₂₀₁₅ /				
2008	<i>Y</i> ₂₀₁₀	<i>y</i> ₂₀₁₁	y_{2012}	<i>Y</i> ₂₀₁₃	y_{2014}				
	y ₂₀₁₂ /	<i>y</i> ₂₀₁₃ /	<i>y</i> ₂₀₁₄ /	y ₂₀₁₅ /					
2009	<i>y</i> ₂₀₁₁	<i>Y</i> ₂₀₁₂	y_{2013}	y_{2014}					
	y ₂₀₁₃ /	<i>y</i> ₂₀₁₄ /	<i>y</i> ₂₀₁₅ /						
2010	<i>y</i> ₂₀₁₂	<i>У</i> 2013	y_{2014}						
	<i>y</i> ₂₀₁₄ /	<i>y</i> ₂₀₁₅ /							
2011	<i>У</i> 2013	<i>Y</i> 2014							
	y ₂₀₁₅ /								
2012	<i>y</i> ₂₀₁₄								
2013									

> Fit the 4 dependent variables $r_{3/2}$, $r_{4/3}$, $r_{5/4}$ and r_{5+}

as a multivariate ANOVA using Proc Mixed in SAS

- ➤ where
 - ightarrow Y = log(r),

X = covariates gender (male vs female), Age (<50, 50-64, 65+) and Race (White, Black, API)</p>

Derive the delay adjustment factors from the fitted model

Flow chart

Modeling Cancer Sites/Registries with <50 Cases Per Year

- Form registry groups with similar site specific delay factors
 - Three approximately equal population groups based on empirical 5 year delay
- Use composite factors for registry/cancer site groups with <50 cases/year</p>

Collapsing strata prior to testing for effects

- Combine male and female if either male or female has average < 100 cases/year
- Combine API with black, and API/black with white if the average is less than 100 cases/year
- Collapse <50 with 50-64 and 65+ with 50-64 if average <100 cases/year
- > Test for gender, race, and age effects (p<.05)

Results

SEER9, SEER 13, SEER18, US, and Canada 2013 Composite NAACCR-Based Delay Factors

	SEER 9	SEER 13	SEER 18	US	Canada
Cancer Site					
All Sites	1.028	1.029	1.033	1.045	1.024
Oral Cavity and Pharynx	1.023	1.027	1.032	1.045	1.015
Esophagus	1.016	1.017	1.020	1.029	1.016
Stomach	1.020	1.022	1.025	1.030	1.008
Colon and Rectum	1.018	1.019	1.022	1.032	1.014
Liver and					
Duct	1.049	1.057	1.056	1.054	1.092
Pancreas	1.029	1.031	1.034	1.038	1.035
Larynx	1.016	1.020	1.024	1.035	1.019
Lung and Bronchus	1 026	1 028	1 031	1 036	1 034
Melanoma of	1.020	1.020	1.031	1.030	1.034
the Skin	1.031	1.032	1.037	1.062	1.014
Breast (female)	1.014	1.014	1.017	1.030	1.007
Cervix Uteri (female)	1.019	1.021	1.021	1.031	1.010

SEER9, SEER 13, SEER18, US, and Canada 2013 Composite NAACCR-Based Delay Factors

	SEER 9	SEER 13	SEER 18	US	Canada
Cancer Site					
Corpus and Uterus, NOS (female)	1.010	1.010	1.013	1.023	1.007
Ovary (female)	1.034	1.034	1.037	1.050	1.018
Prostate (male)	1.032	1.036	1.042	1.065	1.023
Testis (male)	1.015	1.017	1.021	1.030	1.006
Urinary Bladder	1.028	1.028	1.032	1.043	1.021
Kidney and Renal Pelvis	1.037	1.037	1.037	1.047	1.050
Brain and Other Nervous System	1.033	1.033	1.037	1.047	1.040
Thyroid	1.017	1.016	1.020	1.028	1.012
Hodgkin Lymphoma	1.020	1.019	1.024	1.035	1.014
Non-Hodgkin	1 034	1 033	1 040	1 055	1 017
Myeloma	1 104	1 106	1 115	1 141	1.017
Leukemia	1.144	1.135	1.139	1.157	1.117

Sample Registry Report Dec 2015 Submission Diagnosis year 2013

Data from NAACCR December 2015 Submission			Unit	ed States (To	otal)	Sample Registry		
Site	Sex	Race	Age- Adjusted Rate	Delay Age- Adjusted Rate	Composite Delay Factor	Age- Adjusted Rate	Delay Age- Adjusted Rate	Composite Delay Factor
All Sites	Both Sexes	All Races	430.885	450.156	1.045	439.476	450.196	1.024
All Sites	Both Sexes	White	431.450	453.396	1.051	434.700	447.293	1.029
All Sites	Both Sexes	Black	436.791	464.480	1.063	447.444	465.529	1.040
All Sites	Both Sexes	Asian or Pacific Islander	279.548	298.998	1.070	258.004	268.072	1.039
All Sites	Male	All Races	468.132	491.429	1.050	509.491	522.567	1.026
All Sites	Male	White	463.284	490.989	1.060	493.166	509.713	1.034
All Sites	Male	Black	509.065	545.774	1.072	555.172	580.193	1.045
All Sites	Male	Asian or Pacific Islander	285.511	308.161	1.079	239.378	250.166	1.045

•••••

Sample Registry Report Dec 2015 Submission Diagnosis years 2009-2013

Data from NA December 20 Submission	AACCR 15	Uni	ted States (To	tal)	Sample registry			
Site	Sex	Age- Adjusted Rate	Delay Age- Adjusted Rate	Composite Delay Factor	Age- Adjusted Rate	Delay Age- Adjusted Rate	Composite Delay Factor	
All Sites	Both Sexes	448.058	457.488	1.021	454.634	460.223	1.012	
All Sites	Male	500.030	511.433	1.023	541.973	548.346	1.012	
All Sites	Female	411.825	419.765	1.019	391.555	396.608	1.013	
Oral Cavity and Pharynx	Both Sexes	11.316	11.571	1.023	12.910	13.009	1.008	
Oral Cavity and Pharvnx	Male	17.052	17.445	1.023	19.814	19.985	1.009	
Oral Cavity and Pharynx	Female	6.308	6.443	1.021	7.032	7.070	1.005	
Stomach	Both Sexes	6.711	6.798	1.013	6.397	6.438	1.007	
Stomach	Male	9.274	9.393	1.013	8.674	8.729	1.006	

•

Four Delay Adjustment Factors per Tumor

For each tumor, using NAACCR December submission produce delay factors for each combination:

	All races	Race- specific
All sites	Х	Х
Site-specific	Х	Х

Cancer Site

 Since not every cancer site is covered, we cannot have SEER*Stat weight individual sites specific factors to produce delay adjusted rates for All Sites. We need a separate All Sites factor

Race

- Separate all race and race specific factors are needed to account for the fact that some cases first come into the registry without a race designation, and assigned a race in later submissions
- Race specific factors for Whites, Blacks, API
 - > Working on factors for AI/AN (CHSDA counties only not by registry) and Hispanics

- For US registries, in general, all races tend to have smaller delay factors then race-specific delay factors.
- Each case has an "all race" factor and a racespecific factor. If reporting "all race" statistics, the smaller all race delay adjustment factors should be used, while reporting rates for specific races, the larger race specific factors should used.

Even though conceptually delay factors are estimated by cancer site registry, age group, gender, race, and delay time, because of collapsing of the data prior to modeling, or factors not reaching statistical significance, some of these factors may be identical.

Goal for the Next Year

<u>Revise the models so they provide the proper balance of</u> <u>two opposing goals</u>

Capture the unique patterns of reporting delay for each registry

Provide stable estimates that are not too noisy

2017 Specific Goals

- Revise the models so that racial/ethnic groups with smaller race specific counts can possibly have unique factors
 - In current model for smaller registries/rarer cancer sites B/API (or W/B/API) are pooled prior to analysis
- Produce factors at the registry level for White Non-Hispanic, Black Non-Hispanic, Hispanic, API
- Produce aggregate US factors for AI/AN for CHSDA counties
- Release race-specific registry-specific factors so registries can start to use delay adjustment in their individual registry reports

Thank you.